一种获取北冰洋第一年海冰卫星PAR反照率时间序列的方法

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Elementa-Science of the Anthropocene Pub Date : 2022-01-01 DOI:10.1525/elementa.2020.00080
J. Laliberté, E. Rehm, B. Hamre, C. Goyens, D. Perovich, M. Babin
{"title":"一种获取北冰洋第一年海冰卫星PAR反照率时间序列的方法","authors":"J. Laliberté, E. Rehm, B. Hamre, C. Goyens, D. Perovich, M. Babin","doi":"10.1525/elementa.2020.00080","DOIUrl":null,"url":null,"abstract":"Deriving sea ice albedo from spaceborne platforms is of interest to model the propagation of the photosynthetically available radiation (PAR) through Arctic sea ice. We show here that use of the Moderate Resolution Imaging Spectroradiometer (MODIS) operational surface reflectance satellite product to derive albedo in the PAR spectral range is possible. To retrieve PAR albedo from the remote sensing surface reflectance, we trained a predictive model based on a principal component analysis with in situ and simulated data. The predictive model can be applied to first-year sea ice surfaces such as dry snow, melting snow, bare ice and melt ponds. Based on in situ measurements and the prescribed atmospheric correction uncertainty, the estimated PAR albedo had a mean absolute error of 0.057, a root mean square error of 0.074 and an R2 value of 0.91. As a demonstration, we retrieved PAR albedo on a 9-km2 area over late spring and early summer 2015 and 2016 at a coastal location in Baffin Bay, Canada. On-site measurements of PAR albedo, melt pond fraction and types of precipitation were used to examine the estimated PAR albedo time series. The results show a dynamic and realistic PAR albedo time series, although clouds remained the major obstacle to the method. This easy-to-implement model may be used for the partitioning of PAR in the Arctic Ocean and ultimately to better understand the dynamics of marine primary producers.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"1 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method to derive satellite PAR albedo time series over first-year sea ice in the Arctic Ocean\",\"authors\":\"J. Laliberté, E. Rehm, B. Hamre, C. Goyens, D. Perovich, M. Babin\",\"doi\":\"10.1525/elementa.2020.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deriving sea ice albedo from spaceborne platforms is of interest to model the propagation of the photosynthetically available radiation (PAR) through Arctic sea ice. We show here that use of the Moderate Resolution Imaging Spectroradiometer (MODIS) operational surface reflectance satellite product to derive albedo in the PAR spectral range is possible. To retrieve PAR albedo from the remote sensing surface reflectance, we trained a predictive model based on a principal component analysis with in situ and simulated data. The predictive model can be applied to first-year sea ice surfaces such as dry snow, melting snow, bare ice and melt ponds. Based on in situ measurements and the prescribed atmospheric correction uncertainty, the estimated PAR albedo had a mean absolute error of 0.057, a root mean square error of 0.074 and an R2 value of 0.91. As a demonstration, we retrieved PAR albedo on a 9-km2 area over late spring and early summer 2015 and 2016 at a coastal location in Baffin Bay, Canada. On-site measurements of PAR albedo, melt pond fraction and types of precipitation were used to examine the estimated PAR albedo time series. The results show a dynamic and realistic PAR albedo time series, although clouds remained the major obstacle to the method. This easy-to-implement model may be used for the partitioning of PAR in the Arctic Ocean and ultimately to better understand the dynamics of marine primary producers.\",\"PeriodicalId\":54279,\"journal\":{\"name\":\"Elementa-Science of the Anthropocene\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elementa-Science of the Anthropocene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1525/elementa.2020.00080\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2020.00080","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用星载平台获取海冰反照率对模拟北极海冰中光合有效辐射(PAR)的传播具有重要意义。我们在这里表明,使用中分辨率成像光谱仪(MODIS)操作表面反射率卫星产品来推导PAR光谱范围内的反照率是可能的。为了从遥感地表反射率中提取PAR反照率,我们利用实测数据和模拟数据训练了一个基于主成分分析的预测模型。该预测模型可应用于干雪、融雪、裸冰和融池等一年海冰表面。基于现场测量和规定的大气校正不确定度,估算PAR反照率的平均绝对误差为0.057,均方根误差为0.074,R2值为0.91。作为示范,我们检索了2015年和2016年春末夏初在加拿大巴芬湾沿海地区9平方公里面积上的PAR反照率。利用PAR反照率、熔池分数和降水类型的现场测量来检验估算的PAR反照率时间序列。结果显示了一个动态和真实的PAR反照率时间序列,尽管云仍然是该方法的主要障碍。这种易于实现的模型可用于划分北冰洋PAR,并最终更好地了解海洋初级生产者的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method to derive satellite PAR albedo time series over first-year sea ice in the Arctic Ocean
Deriving sea ice albedo from spaceborne platforms is of interest to model the propagation of the photosynthetically available radiation (PAR) through Arctic sea ice. We show here that use of the Moderate Resolution Imaging Spectroradiometer (MODIS) operational surface reflectance satellite product to derive albedo in the PAR spectral range is possible. To retrieve PAR albedo from the remote sensing surface reflectance, we trained a predictive model based on a principal component analysis with in situ and simulated data. The predictive model can be applied to first-year sea ice surfaces such as dry snow, melting snow, bare ice and melt ponds. Based on in situ measurements and the prescribed atmospheric correction uncertainty, the estimated PAR albedo had a mean absolute error of 0.057, a root mean square error of 0.074 and an R2 value of 0.91. As a demonstration, we retrieved PAR albedo on a 9-km2 area over late spring and early summer 2015 and 2016 at a coastal location in Baffin Bay, Canada. On-site measurements of PAR albedo, melt pond fraction and types of precipitation were used to examine the estimated PAR albedo time series. The results show a dynamic and realistic PAR albedo time series, although clouds remained the major obstacle to the method. This easy-to-implement model may be used for the partitioning of PAR in the Arctic Ocean and ultimately to better understand the dynamics of marine primary producers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Elementa-Science of the Anthropocene
Elementa-Science of the Anthropocene Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.90
自引率
5.10%
发文量
65
审稿时长
16 weeks
期刊介绍: A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.
期刊最新文献
Spatiotemporal changes in Iranian rivers’ discharge Structure and function of the western Baffin Bay coastal and shelf ecosystem Agroecological transitions in the mind Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance Sea ice and snow characteristics from year-long transects at the MOSAiC Central Observatory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1