大量的微生物群落变化,以响应一个特殊的有害藻华在南加州沿海

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Elementa-Science of the Anthropocene Pub Date : 2022-01-01 DOI:10.1525/elementa.2021.00088
Jesse M Wilson, Natalia G. Erazo, Elizabeth J. Connors, E. J. Chamberlain, Samantha M. Clements, Melissa L. Carter, J. Smith, J. Bowman
{"title":"大量的微生物群落变化,以响应一个特殊的有害藻华在南加州沿海","authors":"Jesse M Wilson, Natalia G. Erazo, Elizabeth J. Connors, E. J. Chamberlain, Samantha M. Clements, Melissa L. Carter, J. Smith, J. Bowman","doi":"10.1525/elementa.2021.00088","DOIUrl":null,"url":null,"abstract":"Phytoplankton blooms create organic matter that stimulates entire marine ecosystems, including other components of the microbial community. How the ecosystem responds varies depending on the intensity, duration, and composition of the bloom. When the bloom has a direct or indirect negative impact on the ecosystem, it is termed a harmful algal bloom (HAB). HAB frequency is expected to increase in response to changing oceanic conditions and coastal nutrient supply. Characterizing the response of the bacterial and archaeal communities to HABs will improve our understanding of the ecological impacts of these phenomena. We utilized time series of chlorophyll a, phaeophytin, dissolved oxygen, flow cytometry cell counts, and microbial community structure (assessed via 16S rRNA gene sequences) maintained by several observing programs to investigate how the microbial community was affected by an exceptional bloom of Lingulodinium polyedra in coastal Southern California. These multi-year datasets allowed us to compare the microbial community response to past events, such as a smaller L. polyedra bloom the previous year. We demonstrated that the bacterial and archaeal response to the 2020 bloom was unique taxonomically, with many novel heterotrophs, and higher trophic state variance. The measured heterotrophic response to the bloom resulted in massive oxygen drawdown and may have impacted the length of the bloom and contributed to a secondary diatom bloom following the main HAB event. Taken together, these data illustrate how the massive 2020 L. polyedra bloom created unique ecological conditions for coastal Southern California.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Substantial microbial community shifts in response to an exceptional harmful algal bloom in coastal Southern California\",\"authors\":\"Jesse M Wilson, Natalia G. Erazo, Elizabeth J. Connors, E. J. Chamberlain, Samantha M. Clements, Melissa L. Carter, J. Smith, J. Bowman\",\"doi\":\"10.1525/elementa.2021.00088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phytoplankton blooms create organic matter that stimulates entire marine ecosystems, including other components of the microbial community. How the ecosystem responds varies depending on the intensity, duration, and composition of the bloom. When the bloom has a direct or indirect negative impact on the ecosystem, it is termed a harmful algal bloom (HAB). HAB frequency is expected to increase in response to changing oceanic conditions and coastal nutrient supply. Characterizing the response of the bacterial and archaeal communities to HABs will improve our understanding of the ecological impacts of these phenomena. We utilized time series of chlorophyll a, phaeophytin, dissolved oxygen, flow cytometry cell counts, and microbial community structure (assessed via 16S rRNA gene sequences) maintained by several observing programs to investigate how the microbial community was affected by an exceptional bloom of Lingulodinium polyedra in coastal Southern California. These multi-year datasets allowed us to compare the microbial community response to past events, such as a smaller L. polyedra bloom the previous year. We demonstrated that the bacterial and archaeal response to the 2020 bloom was unique taxonomically, with many novel heterotrophs, and higher trophic state variance. The measured heterotrophic response to the bloom resulted in massive oxygen drawdown and may have impacted the length of the bloom and contributed to a secondary diatom bloom following the main HAB event. Taken together, these data illustrate how the massive 2020 L. polyedra bloom created unique ecological conditions for coastal Southern California.\",\"PeriodicalId\":54279,\"journal\":{\"name\":\"Elementa-Science of the Anthropocene\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elementa-Science of the Anthropocene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1525/elementa.2021.00088\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2021.00088","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

浮游植物大量繁殖产生的有机物质刺激了整个海洋生态系统,包括微生物群落的其他组成部分。生态系统的反应取决于水华的强度、持续时间和组成。当藻华对生态系统有直接或间接的负面影响时,它被称为有害藻华(HAB)。赤潮发生的频率预计会随着海洋条件和沿海养分供应的变化而增加。描述细菌和古细菌群落对赤潮的反应将提高我们对这些现象的生态影响的理解。我们利用几个观测项目维持的叶绿素a、褐藻素、溶解氧、流式细胞术细胞计数和微生物群落结构(通过16S rRNA基因序列评估)的时间序列来研究南加州沿海一次特殊的聚藻水华对微生物群落的影响。这些多年的数据集使我们能够比较微生物群落对过去事件的反应,例如前一年较小的聚乳酸开花。我们证明了细菌和古细菌对2020年华的反应在分类上是独特的,有许多新的异养菌和更高的营养状态方差。测量到的对藻华的异养反应导致了大量的氧气减少,可能影响了藻华的长度,并在主要的藻华事件之后导致了二次硅藻华。综上所述,这些数据说明了2020年大规模的聚乳酸水华是如何为南加州沿海地区创造独特的生态条件的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Substantial microbial community shifts in response to an exceptional harmful algal bloom in coastal Southern California
Phytoplankton blooms create organic matter that stimulates entire marine ecosystems, including other components of the microbial community. How the ecosystem responds varies depending on the intensity, duration, and composition of the bloom. When the bloom has a direct or indirect negative impact on the ecosystem, it is termed a harmful algal bloom (HAB). HAB frequency is expected to increase in response to changing oceanic conditions and coastal nutrient supply. Characterizing the response of the bacterial and archaeal communities to HABs will improve our understanding of the ecological impacts of these phenomena. We utilized time series of chlorophyll a, phaeophytin, dissolved oxygen, flow cytometry cell counts, and microbial community structure (assessed via 16S rRNA gene sequences) maintained by several observing programs to investigate how the microbial community was affected by an exceptional bloom of Lingulodinium polyedra in coastal Southern California. These multi-year datasets allowed us to compare the microbial community response to past events, such as a smaller L. polyedra bloom the previous year. We demonstrated that the bacterial and archaeal response to the 2020 bloom was unique taxonomically, with many novel heterotrophs, and higher trophic state variance. The measured heterotrophic response to the bloom resulted in massive oxygen drawdown and may have impacted the length of the bloom and contributed to a secondary diatom bloom following the main HAB event. Taken together, these data illustrate how the massive 2020 L. polyedra bloom created unique ecological conditions for coastal Southern California.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Elementa-Science of the Anthropocene
Elementa-Science of the Anthropocene Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.90
自引率
5.10%
发文量
65
审稿时长
16 weeks
期刊介绍: A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.
期刊最新文献
Spatiotemporal changes in Iranian rivers’ discharge Structure and function of the western Baffin Bay coastal and shelf ecosystem Agroecological transitions in the mind Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance Sea ice and snow characteristics from year-long transects at the MOSAiC Central Observatory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1