S. Nagalingam, R. Seco, K. Musaev, Chhandak Basu, Saewung Kim, A. Guenther
{"title":"热胁迫对番茄幼苗叶片生物源性挥发性有机物排放及基因表达的影响","authors":"S. Nagalingam, R. Seco, K. Musaev, Chhandak Basu, Saewung Kim, A. Guenther","doi":"10.1525/elementa.2021.00096","DOIUrl":null,"url":null,"abstract":"We present foliar biogenic volatile organic compound (BVOC) emission data from 24-h heat-stressed tomato (Solanum lycopersicum) seedlings including speciated monoterpenes and sesquiterpenes and high time-resolution measurements of methyl salicylate and total monoterpenes. The median total monoterpene and total sesquiterpene emission rates at 30°C were 18.5 and 0.172 pmol m–2 s–1, respectively, which falls within the negligible emission category of previous studies. However, initial heat exposure (39°C or 42°C) increased the emissions of approximately half of the targeted compounds beyond what was predicted by current BVOC emission temperature response algorithms. The enhanced emissions were not always sustained for the entire duration of the heat stress and some plants exhibited a delayed monoterpene response, where emissions peaked toward the end of the heat treatment. Methyl salicylate, a known stress marker, responded differently to the heat stress than most of the other compounds. Heat stress increased methyl salicylate emissions in some plants (at least initially), but in others, emissions declined or did not change significantly. There was no significant correlation between the magnitude of gene expression and emission induction of monoterpenes or methyl salicylate. Furthermore, the emitted monoterpenes did not exhibit any apparent light-dependent behavior, which suggests that these monoterpene stress emissions mostly originated from light-independent foliar storage pools and not from increased de novo production. In contrast, methyl salicylate emissions appear to have contributions from both de novo synthesis and stored pools, as they showed both enzyme-controlled (i.e., light-dependent) and light-independent behaviors. Analyses of the foliar essential oils demonstrate that most of the emitted BVOCs were also present in stored pools. The pool sizes were generally large enough to sustain unstressed emission levels for days to months, and even years for some compounds. However, heat-induced emission enhancement can diminish the pool sizes of some BVOCs, which could decrease subsequent emissions.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"1 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impact of heat stress on foliar biogenic volatile organic compound emission and gene expression in tomato (Solanum lycopersicum) seedlings\",\"authors\":\"S. Nagalingam, R. Seco, K. Musaev, Chhandak Basu, Saewung Kim, A. Guenther\",\"doi\":\"10.1525/elementa.2021.00096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present foliar biogenic volatile organic compound (BVOC) emission data from 24-h heat-stressed tomato (Solanum lycopersicum) seedlings including speciated monoterpenes and sesquiterpenes and high time-resolution measurements of methyl salicylate and total monoterpenes. The median total monoterpene and total sesquiterpene emission rates at 30°C were 18.5 and 0.172 pmol m–2 s–1, respectively, which falls within the negligible emission category of previous studies. However, initial heat exposure (39°C or 42°C) increased the emissions of approximately half of the targeted compounds beyond what was predicted by current BVOC emission temperature response algorithms. The enhanced emissions were not always sustained for the entire duration of the heat stress and some plants exhibited a delayed monoterpene response, where emissions peaked toward the end of the heat treatment. Methyl salicylate, a known stress marker, responded differently to the heat stress than most of the other compounds. Heat stress increased methyl salicylate emissions in some plants (at least initially), but in others, emissions declined or did not change significantly. There was no significant correlation between the magnitude of gene expression and emission induction of monoterpenes or methyl salicylate. Furthermore, the emitted monoterpenes did not exhibit any apparent light-dependent behavior, which suggests that these monoterpene stress emissions mostly originated from light-independent foliar storage pools and not from increased de novo production. In contrast, methyl salicylate emissions appear to have contributions from both de novo synthesis and stored pools, as they showed both enzyme-controlled (i.e., light-dependent) and light-independent behaviors. Analyses of the foliar essential oils demonstrate that most of the emitted BVOCs were also present in stored pools. The pool sizes were generally large enough to sustain unstressed emission levels for days to months, and even years for some compounds. However, heat-induced emission enhancement can diminish the pool sizes of some BVOCs, which could decrease subsequent emissions.\",\"PeriodicalId\":54279,\"journal\":{\"name\":\"Elementa-Science of the Anthropocene\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elementa-Science of the Anthropocene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1525/elementa.2021.00096\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2021.00096","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Impact of heat stress on foliar biogenic volatile organic compound emission and gene expression in tomato (Solanum lycopersicum) seedlings
We present foliar biogenic volatile organic compound (BVOC) emission data from 24-h heat-stressed tomato (Solanum lycopersicum) seedlings including speciated monoterpenes and sesquiterpenes and high time-resolution measurements of methyl salicylate and total monoterpenes. The median total monoterpene and total sesquiterpene emission rates at 30°C were 18.5 and 0.172 pmol m–2 s–1, respectively, which falls within the negligible emission category of previous studies. However, initial heat exposure (39°C or 42°C) increased the emissions of approximately half of the targeted compounds beyond what was predicted by current BVOC emission temperature response algorithms. The enhanced emissions were not always sustained for the entire duration of the heat stress and some plants exhibited a delayed monoterpene response, where emissions peaked toward the end of the heat treatment. Methyl salicylate, a known stress marker, responded differently to the heat stress than most of the other compounds. Heat stress increased methyl salicylate emissions in some plants (at least initially), but in others, emissions declined or did not change significantly. There was no significant correlation between the magnitude of gene expression and emission induction of monoterpenes or methyl salicylate. Furthermore, the emitted monoterpenes did not exhibit any apparent light-dependent behavior, which suggests that these monoterpene stress emissions mostly originated from light-independent foliar storage pools and not from increased de novo production. In contrast, methyl salicylate emissions appear to have contributions from both de novo synthesis and stored pools, as they showed both enzyme-controlled (i.e., light-dependent) and light-independent behaviors. Analyses of the foliar essential oils demonstrate that most of the emitted BVOCs were also present in stored pools. The pool sizes were generally large enough to sustain unstressed emission levels for days to months, and even years for some compounds. However, heat-induced emission enhancement can diminish the pool sizes of some BVOCs, which could decrease subsequent emissions.
期刊介绍:
A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.