{"title":"核酸计算及其改变硅基技术的潜力","authors":"Seth G. Abels, Emil F Khisamutdinov","doi":"10.1515/rnan-2015-0003","DOIUrl":null,"url":null,"abstract":"Abstract Molecular computers have existed on our planet for more than 3.5 billion years. Molecular computing devices, composed of biological substances such as nucleic acids, are responsible for the logical processing of a variety of inputs, creating viable outputs that are key components of the cellular machinery of all living organisms. We have begun to adopt some of the structural and functional knowledge of the cellular apparatus in order to fabricate nucleic-acid-based molecular computers in vitro and in vivo. Nucleic acid computing is directly dependent on advances in DNA and RNA nanotechnology. The field is still emerging and a number of challenges persist. Perhaps the most salient among these is how to translate a variety of nucleic-acid-based logic gates, developed by numerous research laboratories, into the realm of silicon-based computing. This mini-review provides some basic information on the advances in nucleic-acid-based computing and its potential to serve as an alternative that can revolutionize silicon-based technology.","PeriodicalId":93282,"journal":{"name":"DNA and RNA nanotechnology","volume":"2 1","pages":"13 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rnan-2015-0003","citationCount":"5","resultStr":"{\"title\":\"Nucleic Acid Computing and its Potential to Transform Silicon-Based Technology\",\"authors\":\"Seth G. Abels, Emil F Khisamutdinov\",\"doi\":\"10.1515/rnan-2015-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Molecular computers have existed on our planet for more than 3.5 billion years. Molecular computing devices, composed of biological substances such as nucleic acids, are responsible for the logical processing of a variety of inputs, creating viable outputs that are key components of the cellular machinery of all living organisms. We have begun to adopt some of the structural and functional knowledge of the cellular apparatus in order to fabricate nucleic-acid-based molecular computers in vitro and in vivo. Nucleic acid computing is directly dependent on advances in DNA and RNA nanotechnology. The field is still emerging and a number of challenges persist. Perhaps the most salient among these is how to translate a variety of nucleic-acid-based logic gates, developed by numerous research laboratories, into the realm of silicon-based computing. This mini-review provides some basic information on the advances in nucleic-acid-based computing and its potential to serve as an alternative that can revolutionize silicon-based technology.\",\"PeriodicalId\":93282,\"journal\":{\"name\":\"DNA and RNA nanotechnology\",\"volume\":\"2 1\",\"pages\":\"13 - 22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/rnan-2015-0003\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and RNA nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rnan-2015-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and RNA nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rnan-2015-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nucleic Acid Computing and its Potential to Transform Silicon-Based Technology
Abstract Molecular computers have existed on our planet for more than 3.5 billion years. Molecular computing devices, composed of biological substances such as nucleic acids, are responsible for the logical processing of a variety of inputs, creating viable outputs that are key components of the cellular machinery of all living organisms. We have begun to adopt some of the structural and functional knowledge of the cellular apparatus in order to fabricate nucleic-acid-based molecular computers in vitro and in vivo. Nucleic acid computing is directly dependent on advances in DNA and RNA nanotechnology. The field is still emerging and a number of challenges persist. Perhaps the most salient among these is how to translate a variety of nucleic-acid-based logic gates, developed by numerous research laboratories, into the realm of silicon-based computing. This mini-review provides some basic information on the advances in nucleic-acid-based computing and its potential to serve as an alternative that can revolutionize silicon-based technology.