{"title":"Co/Mn/Br催化椰壳多孔碳氧化NMST制NMSBA,乙酸为活化剂","authors":"F. Guo, Hua-jie Liu, Xin‐zhi Zhou, Xiang‐li Long","doi":"10.1515/ijcre-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a heterogeneous catalytic system consisting of Co/Mn/Br/activated carbon is used to catalyze 2-nitro-4-methylsulfonyl benzoic acid (NMSBA) production from the oxidation of 2-nitro-4-methylsulfonyltoluene (NMST) by oxygen. The activated carbon (AC) is made from coconut shell with acetic acid as an activator. The experiments indicate that the best AC is made by immersing coconut shell in 12 mol L−1 HAc solution at 50 °C for 32 h with a liquid/solid ratio (mL/g) of 5:1 and then being heated in nitrogen at 800 °C for 6 h. Compared with the Co/Mn/Br/H3PMo12O40@CAC (CAC, commercial activated carbon originated from coconut shell) catalytic system, the Co/Mn/Br/AC catalytic system is able to gain much higher NMSBA selectivity. In spite of holding smaller surface and less acidic groups, the AC owns much more carboxyl than CAC, which is the main reason for its better performance in the preparation of NMSBA.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"21 1","pages":"663 - 678"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidation of NMST to NMSBA catalyzed by Co/Mn/Br together with porous carbon made from coconut shell with acetic acid as an activator\",\"authors\":\"F. Guo, Hua-jie Liu, Xin‐zhi Zhou, Xiang‐li Long\",\"doi\":\"10.1515/ijcre-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a heterogeneous catalytic system consisting of Co/Mn/Br/activated carbon is used to catalyze 2-nitro-4-methylsulfonyl benzoic acid (NMSBA) production from the oxidation of 2-nitro-4-methylsulfonyltoluene (NMST) by oxygen. The activated carbon (AC) is made from coconut shell with acetic acid as an activator. The experiments indicate that the best AC is made by immersing coconut shell in 12 mol L−1 HAc solution at 50 °C for 32 h with a liquid/solid ratio (mL/g) of 5:1 and then being heated in nitrogen at 800 °C for 6 h. Compared with the Co/Mn/Br/H3PMo12O40@CAC (CAC, commercial activated carbon originated from coconut shell) catalytic system, the Co/Mn/Br/AC catalytic system is able to gain much higher NMSBA selectivity. In spite of holding smaller surface and less acidic groups, the AC owns much more carboxyl than CAC, which is the main reason for its better performance in the preparation of NMSBA.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":\"21 1\",\"pages\":\"663 - 678\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2022-0014\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Oxidation of NMST to NMSBA catalyzed by Co/Mn/Br together with porous carbon made from coconut shell with acetic acid as an activator
Abstract In this paper, a heterogeneous catalytic system consisting of Co/Mn/Br/activated carbon is used to catalyze 2-nitro-4-methylsulfonyl benzoic acid (NMSBA) production from the oxidation of 2-nitro-4-methylsulfonyltoluene (NMST) by oxygen. The activated carbon (AC) is made from coconut shell with acetic acid as an activator. The experiments indicate that the best AC is made by immersing coconut shell in 12 mol L−1 HAc solution at 50 °C for 32 h with a liquid/solid ratio (mL/g) of 5:1 and then being heated in nitrogen at 800 °C for 6 h. Compared with the Co/Mn/Br/H3PMo12O40@CAC (CAC, commercial activated carbon originated from coconut shell) catalytic system, the Co/Mn/Br/AC catalytic system is able to gain much higher NMSBA selectivity. In spite of holding smaller surface and less acidic groups, the AC owns much more carboxyl than CAC, which is the main reason for its better performance in the preparation of NMSBA.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.