MDI-GPU:使用GP-GPU计算加速基因组尺度数据的集成建模

IF 0.9 4区 数学 Q3 Mathematics Statistical Applications in Genetics and Molecular Biology Pub Date : 2016-02-24 DOI:10.1515/sagmb-2015-0055
Samuel A. Mason, Faiz Sayyid, Paul D. W. Kirk, Colin Starr, D. Wild
{"title":"MDI-GPU:使用GP-GPU计算加速基因组尺度数据的集成建模","authors":"Samuel A. Mason, Faiz Sayyid, Paul D. W. Kirk, Colin Starr, D. Wild","doi":"10.1515/sagmb-2015-0055","DOIUrl":null,"url":null,"abstract":"Abstract The integration of multi-dimensional datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct – but often complementary – information. However, the large amount of data adds burden to any inference task. Flexible Bayesian methods may reduce the necessity for strong modelling assumptions, but can also increase the computational burden. We present an improved implementation of a Bayesian correlated clustering algorithm, that permits integrated clustering to be routinely performed across multiple datasets, each with tens of thousands of items. By exploiting GPU based computation, we are able to improve runtime performance of the algorithm by almost four orders of magnitude. This permits analysis across genomic-scale data sets, greatly expanding the range of applications over those originally possible. MDI is available here: http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/.","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2016-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2015-0055","citationCount":"8","resultStr":"{\"title\":\"MDI-GPU: accelerating integrative modelling for genomic-scale data using GP-GPU computing\",\"authors\":\"Samuel A. Mason, Faiz Sayyid, Paul D. W. Kirk, Colin Starr, D. Wild\",\"doi\":\"10.1515/sagmb-2015-0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The integration of multi-dimensional datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct – but often complementary – information. However, the large amount of data adds burden to any inference task. Flexible Bayesian methods may reduce the necessity for strong modelling assumptions, but can also increase the computational burden. We present an improved implementation of a Bayesian correlated clustering algorithm, that permits integrated clustering to be routinely performed across multiple datasets, each with tens of thousands of items. By exploiting GPU based computation, we are able to improve runtime performance of the algorithm by almost four orders of magnitude. This permits analysis across genomic-scale data sets, greatly expanding the range of applications over those originally possible. MDI is available here: http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/.\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2015-0055\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2015-0055\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2015-0055","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

多维数据集的集成一直是系统生物学和基因组医学的一个关键挑战。现代高通量技术产生了大量不同的数据类型,提供了不同的(但往往是互补的)信息。然而,大量的数据给任何推理任务都增加了负担。灵活的贝叶斯方法可以减少对强建模假设的需要,但也会增加计算负担。我们提出了一种改进的贝叶斯相关聚类算法的实现,它允许在多个数据集上常规地执行集成聚类,每个数据集都有数万个项目。通过利用基于GPU的计算,我们能够将算法的运行时性能提高近四个数量级。这允许跨基因组规模的数据集进行分析,大大扩展了最初可能的应用范围。MDI可以在这里获得:http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MDI-GPU: accelerating integrative modelling for genomic-scale data using GP-GPU computing
Abstract The integration of multi-dimensional datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct – but often complementary – information. However, the large amount of data adds burden to any inference task. Flexible Bayesian methods may reduce the necessity for strong modelling assumptions, but can also increase the computational burden. We present an improved implementation of a Bayesian correlated clustering algorithm, that permits integrated clustering to be routinely performed across multiple datasets, each with tens of thousands of items. By exploiting GPU based computation, we are able to improve runtime performance of the algorithm by almost four orders of magnitude. This permits analysis across genomic-scale data sets, greatly expanding the range of applications over those originally possible. MDI is available here: http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
期刊最新文献
Empirically adjusted fixed-effects meta-analysis methods in genomic studies. A CNN-CBAM-BIGRU model for protein function prediction. A heavy-tailed model for analyzing miRNA-seq raw read counts. Flexible model-based non-negative matrix factorization with application to mutational signatures. Choice of baseline hazards in joint modeling of longitudinal and time-to-event cancer survival data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1