Yu Zhang, R. Striker, Moruf Disu, E. Monono, A. Peckrul, Gurmukh Advani, Bingcan Chen, Benjamin D. Braaten, Xin Sun
{"title":"基于介电常数的射频传感谷物质量估计","authors":"Yu Zhang, R. Striker, Moruf Disu, E. Monono, A. Peckrul, Gurmukh Advani, Bingcan Chen, Benjamin D. Braaten, Xin Sun","doi":"10.13031/aea.15121","DOIUrl":null,"url":null,"abstract":"HighlightsRadio frequency sensing technology was used to estimate clean grain mass based on grain moisture content and grain properties.Multiple variable regression analysis was used to develop grain mass estimation model.A grain mass estimation model with high R2 was developed by introducing dielectric properties and phase angle.Parameter of dielectric constant e' indicated the domination of moisture content in grain mass estimation model.Abstract. Grain mass estimation is critical in many precision agriculture applications, especially in yield monitoring during harvest procedures. A new clean grain mass estimation method using Radio Frequency (RF) sensing technology is discussed in this paper. RF sensing technology is sensitive to moisture content and grain properties. In this study, a vector network analyzer (VNA) and a pair of horn antennas were used to collect phase shift and attenuation data from 1 to 18 GHz of grain samples (soybean, canola, and corn) on a static testbed in an anechoic chamber. Using multiple variable linear regression analysis, a comprehensive clean grain mass estimation model was developed based on the dielectric properties of the grain samples derived from the S-Parameters at 13 GHz. Dielectric (e') constant/properties and phase shift were introduced into the regression models and generated a grain mass estimation result with R2 values of 0.976, 0.977, and 0.989 for soybean, canola, and corn samples, respectively. The results indicate that RF sensing technology can reveal how grain attributes interact with electromagnetic fields at a certain frequency and has the potential to provide more accurate sensing methods for estimating grain mass in multiple precision agricultural applications. Keywords: Keywords., Dielectric properties, Grain mass estimation, Microwave frequency, Phase shifts, Radio frequency sensing.","PeriodicalId":55501,"journal":{"name":"Applied Engineering in Agriculture","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric Constant-Based Grain Mass Estimation Using Radio Frequencies Sensing Technology\",\"authors\":\"Yu Zhang, R. Striker, Moruf Disu, E. Monono, A. Peckrul, Gurmukh Advani, Bingcan Chen, Benjamin D. Braaten, Xin Sun\",\"doi\":\"10.13031/aea.15121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HighlightsRadio frequency sensing technology was used to estimate clean grain mass based on grain moisture content and grain properties.Multiple variable regression analysis was used to develop grain mass estimation model.A grain mass estimation model with high R2 was developed by introducing dielectric properties and phase angle.Parameter of dielectric constant e' indicated the domination of moisture content in grain mass estimation model.Abstract. Grain mass estimation is critical in many precision agriculture applications, especially in yield monitoring during harvest procedures. A new clean grain mass estimation method using Radio Frequency (RF) sensing technology is discussed in this paper. RF sensing technology is sensitive to moisture content and grain properties. In this study, a vector network analyzer (VNA) and a pair of horn antennas were used to collect phase shift and attenuation data from 1 to 18 GHz of grain samples (soybean, canola, and corn) on a static testbed in an anechoic chamber. Using multiple variable linear regression analysis, a comprehensive clean grain mass estimation model was developed based on the dielectric properties of the grain samples derived from the S-Parameters at 13 GHz. Dielectric (e') constant/properties and phase shift were introduced into the regression models and generated a grain mass estimation result with R2 values of 0.976, 0.977, and 0.989 for soybean, canola, and corn samples, respectively. The results indicate that RF sensing technology can reveal how grain attributes interact with electromagnetic fields at a certain frequency and has the potential to provide more accurate sensing methods for estimating grain mass in multiple precision agricultural applications. Keywords: Keywords., Dielectric properties, Grain mass estimation, Microwave frequency, Phase shifts, Radio frequency sensing.\",\"PeriodicalId\":55501,\"journal\":{\"name\":\"Applied Engineering in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Engineering in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13031/aea.15121\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Engineering in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/aea.15121","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Dielectric Constant-Based Grain Mass Estimation Using Radio Frequencies Sensing Technology
HighlightsRadio frequency sensing technology was used to estimate clean grain mass based on grain moisture content and grain properties.Multiple variable regression analysis was used to develop grain mass estimation model.A grain mass estimation model with high R2 was developed by introducing dielectric properties and phase angle.Parameter of dielectric constant e' indicated the domination of moisture content in grain mass estimation model.Abstract. Grain mass estimation is critical in many precision agriculture applications, especially in yield monitoring during harvest procedures. A new clean grain mass estimation method using Radio Frequency (RF) sensing technology is discussed in this paper. RF sensing technology is sensitive to moisture content and grain properties. In this study, a vector network analyzer (VNA) and a pair of horn antennas were used to collect phase shift and attenuation data from 1 to 18 GHz of grain samples (soybean, canola, and corn) on a static testbed in an anechoic chamber. Using multiple variable linear regression analysis, a comprehensive clean grain mass estimation model was developed based on the dielectric properties of the grain samples derived from the S-Parameters at 13 GHz. Dielectric (e') constant/properties and phase shift were introduced into the regression models and generated a grain mass estimation result with R2 values of 0.976, 0.977, and 0.989 for soybean, canola, and corn samples, respectively. The results indicate that RF sensing technology can reveal how grain attributes interact with electromagnetic fields at a certain frequency and has the potential to provide more accurate sensing methods for estimating grain mass in multiple precision agricultural applications. Keywords: Keywords., Dielectric properties, Grain mass estimation, Microwave frequency, Phase shifts, Radio frequency sensing.
期刊介绍:
This peer-reviewed journal publishes applications of engineering and technology research that address agricultural, food, and biological systems problems. Submissions must include results of practical experiences, tests, or trials presented in a manner and style that will allow easy adaptation by others; results of reviews or studies of installations or applications with substantially new or significant information not readily available in other refereed publications; or a description of successful methods of techniques of education, outreach, or technology transfer.