G. Seniutinas, G. Gervinskas, J. Anguita, D. Hakobyan, E. Brasselet, S. Juodkazis
{"title":"纳米接近直接离子束写入","authors":"G. Seniutinas, G. Gervinskas, J. Anguita, D. Hakobyan, E. Brasselet, S. Juodkazis","doi":"10.1515/nanofab-2015-0006","DOIUrl":null,"url":null,"abstract":"Abstract Focused ion beam (FIB) milling with a 10 nm resolution is used to directly write metallic metasurfaces and micro-optical elements capable to create structured light fields. Surface density of fabricated nano-features, their edge steepness as well as ion implantation extension around the cut line depend on the ion beam intensity profile. The FIB beam intensity cross section was evaluated using atomic force microscopy (AFM) scans of milled line arrays on a thin Pt film. Approximation of two Gaussian intensity distributions describes the actual beam profile composed of central high intensity part and peripheral wings. FIB fabrication reaching aspect ratio of 10 in gold film is demonstrated.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":"2 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2016-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/nanofab-2015-0006","citationCount":"10","resultStr":"{\"title\":\"Nano-proximity direct ion beam writing\",\"authors\":\"G. Seniutinas, G. Gervinskas, J. Anguita, D. Hakobyan, E. Brasselet, S. Juodkazis\",\"doi\":\"10.1515/nanofab-2015-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Focused ion beam (FIB) milling with a 10 nm resolution is used to directly write metallic metasurfaces and micro-optical elements capable to create structured light fields. Surface density of fabricated nano-features, their edge steepness as well as ion implantation extension around the cut line depend on the ion beam intensity profile. The FIB beam intensity cross section was evaluated using atomic force microscopy (AFM) scans of milled line arrays on a thin Pt film. Approximation of two Gaussian intensity distributions describes the actual beam profile composed of central high intensity part and peripheral wings. FIB fabrication reaching aspect ratio of 10 in gold film is demonstrated.\",\"PeriodicalId\":51992,\"journal\":{\"name\":\"Nanofabrication\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2016-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/nanofab-2015-0006\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanofabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/nanofab-2015-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanofabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nanofab-2015-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Abstract Focused ion beam (FIB) milling with a 10 nm resolution is used to directly write metallic metasurfaces and micro-optical elements capable to create structured light fields. Surface density of fabricated nano-features, their edge steepness as well as ion implantation extension around the cut line depend on the ion beam intensity profile. The FIB beam intensity cross section was evaluated using atomic force microscopy (AFM) scans of milled line arrays on a thin Pt film. Approximation of two Gaussian intensity distributions describes the actual beam profile composed of central high intensity part and peripheral wings. FIB fabrication reaching aspect ratio of 10 in gold film is demonstrated.