{"title":"视觉和雷达转向减少农业喷雾器操作员的压力,而不影响转向性能","authors":"Travis Burgers, K. Vanderwerff","doi":"10.13031/jash.15060","DOIUrl":null,"url":null,"abstract":"HighlightsStress was measured in professional sprayer operators who, while working, drove manually and with vision or radar steering.Vision and radar steering reduced the average operator stress rate by 48% relative to manual steering.The use of automatic guidance could have a dramatic positive effect on the health of sprayer operators.Sprayer steering performance was reported for professional operators and both vision and radar guidance for the first time.Abstract. Self-propelled agricultural sprayer operators work an average of 15 h d-1 in peak season, and steering is the task that causes the operator the most stress because of the large number of stimuli involved. Automatic guidance systems help reduce stress and fatigue for operators by allowing them to focus on tasks other than steering. Physiological signals like skin conductance (electrodermal activity, EDA) change with stress and can be used to identify stressful events. The objective of this study was to determine if using a commercially available vision and radar guidance system (VSN®, Raven Industries) reduces agricultural sprayer operators’ stress compared to when they are steering manually. Four male professional sprayer operators participated in this study. Each operator performed his job duties normally in GPS-guidance-planted fields, at his self-selected speed, except to drive some passes manually and others with VSN in the same field. EDA was measured with an Empatica E4 wristband, and stressful events were quantified. Machine data (e.g., speed, RTK-GPS, and VSN metrics) were collected from each sprayer via CAN logs. The steering type, stress rate (e.g., stressful events min-1), and steering performance (cross-track error standard deviation, XTE SD) were determined for each pass. In total, 51 passes (23 manual, 28 VSN) in six fields were analyzed. Operators using VSN had a significant reduction (48% lower, p < 0.001) in their stress rate compared to when they were steering manually. There was no significant difference in the XTE SD for the steering type. The use of an automatic guidance system such as VSN could have a dramatic positive effect on the health of sprayer operators, especially during the long workdays of the peak spraying season, and could reduce the negative effects that stress and fatigue have on steering performance, mistakes, and accidents. Keywords: Electrodermal activity, Guidance systems, Machine vision, Precision agriculture, Radar, Skin conductance, Vehicle guidance.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vision and Radar Steering Reduces Agricultural Sprayer Operator Stress without Compromising Steering Performance\",\"authors\":\"Travis Burgers, K. Vanderwerff\",\"doi\":\"10.13031/jash.15060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HighlightsStress was measured in professional sprayer operators who, while working, drove manually and with vision or radar steering.Vision and radar steering reduced the average operator stress rate by 48% relative to manual steering.The use of automatic guidance could have a dramatic positive effect on the health of sprayer operators.Sprayer steering performance was reported for professional operators and both vision and radar guidance for the first time.Abstract. Self-propelled agricultural sprayer operators work an average of 15 h d-1 in peak season, and steering is the task that causes the operator the most stress because of the large number of stimuli involved. Automatic guidance systems help reduce stress and fatigue for operators by allowing them to focus on tasks other than steering. Physiological signals like skin conductance (electrodermal activity, EDA) change with stress and can be used to identify stressful events. The objective of this study was to determine if using a commercially available vision and radar guidance system (VSN®, Raven Industries) reduces agricultural sprayer operators’ stress compared to when they are steering manually. Four male professional sprayer operators participated in this study. Each operator performed his job duties normally in GPS-guidance-planted fields, at his self-selected speed, except to drive some passes manually and others with VSN in the same field. EDA was measured with an Empatica E4 wristband, and stressful events were quantified. Machine data (e.g., speed, RTK-GPS, and VSN metrics) were collected from each sprayer via CAN logs. The steering type, stress rate (e.g., stressful events min-1), and steering performance (cross-track error standard deviation, XTE SD) were determined for each pass. In total, 51 passes (23 manual, 28 VSN) in six fields were analyzed. Operators using VSN had a significant reduction (48% lower, p < 0.001) in their stress rate compared to when they were steering manually. There was no significant difference in the XTE SD for the steering type. The use of an automatic guidance system such as VSN could have a dramatic positive effect on the health of sprayer operators, especially during the long workdays of the peak spraying season, and could reduce the negative effects that stress and fatigue have on steering performance, mistakes, and accidents. Keywords: Electrodermal activity, Guidance systems, Machine vision, Precision agriculture, Radar, Skin conductance, Vehicle guidance.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13031/jash.15060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13031/jash.15060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vision and Radar Steering Reduces Agricultural Sprayer Operator Stress without Compromising Steering Performance
HighlightsStress was measured in professional sprayer operators who, while working, drove manually and with vision or radar steering.Vision and radar steering reduced the average operator stress rate by 48% relative to manual steering.The use of automatic guidance could have a dramatic positive effect on the health of sprayer operators.Sprayer steering performance was reported for professional operators and both vision and radar guidance for the first time.Abstract. Self-propelled agricultural sprayer operators work an average of 15 h d-1 in peak season, and steering is the task that causes the operator the most stress because of the large number of stimuli involved. Automatic guidance systems help reduce stress and fatigue for operators by allowing them to focus on tasks other than steering. Physiological signals like skin conductance (electrodermal activity, EDA) change with stress and can be used to identify stressful events. The objective of this study was to determine if using a commercially available vision and radar guidance system (VSN®, Raven Industries) reduces agricultural sprayer operators’ stress compared to when they are steering manually. Four male professional sprayer operators participated in this study. Each operator performed his job duties normally in GPS-guidance-planted fields, at his self-selected speed, except to drive some passes manually and others with VSN in the same field. EDA was measured with an Empatica E4 wristband, and stressful events were quantified. Machine data (e.g., speed, RTK-GPS, and VSN metrics) were collected from each sprayer via CAN logs. The steering type, stress rate (e.g., stressful events min-1), and steering performance (cross-track error standard deviation, XTE SD) were determined for each pass. In total, 51 passes (23 manual, 28 VSN) in six fields were analyzed. Operators using VSN had a significant reduction (48% lower, p < 0.001) in their stress rate compared to when they were steering manually. There was no significant difference in the XTE SD for the steering type. The use of an automatic guidance system such as VSN could have a dramatic positive effect on the health of sprayer operators, especially during the long workdays of the peak spraying season, and could reduce the negative effects that stress and fatigue have on steering performance, mistakes, and accidents. Keywords: Electrodermal activity, Guidance systems, Machine vision, Precision agriculture, Radar, Skin conductance, Vehicle guidance.