顺序学习-概述

Seon-Ho Lee, Nyeong-Ho Shin, Chang-Su Kim
{"title":"顺序学习-概述","authors":"Seon-Ho Lee, Nyeong-Ho Shin, Chang-Su Kim","doi":"10.1561/116.00000226","DOIUrl":null,"url":null,"abstract":"Order learning aims to learn the ordering relationship among objects by comparing them. Recently, several order learning techniques have achieved great performances on various computer vision tasks. In this paper, we provide an overview of these order learning techniques. First, we briefly discuss conventional rank estimation algorithms related to order learning. Second, we review the order learning techniques in detail. Third, we discuss the results of order learning on three vision applications: facial age estimation, historical color image (HCI) classification, and aesthetic quality assessment.","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":"1 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Order Learning – An Overview\",\"authors\":\"Seon-Ho Lee, Nyeong-Ho Shin, Chang-Su Kim\",\"doi\":\"10.1561/116.00000226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Order learning aims to learn the ordering relationship among objects by comparing them. Recently, several order learning techniques have achieved great performances on various computer vision tasks. In this paper, we provide an overview of these order learning techniques. First, we briefly discuss conventional rank estimation algorithms related to order learning. Second, we review the order learning techniques in detail. Third, we discuss the results of order learning on three vision applications: facial age estimation, historical color image (HCI) classification, and aesthetic quality assessment.\",\"PeriodicalId\":44812,\"journal\":{\"name\":\"APSIPA Transactions on Signal and Information Processing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APSIPA Transactions on Signal and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/116.00000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APSIPA Transactions on Signal and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/116.00000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

顺序学习的目的是通过比较对象来学习对象之间的顺序关系。近年来,有序学习技术在各种计算机视觉任务中取得了优异的成绩。在本文中,我们提供了这些顺序学习技术的概述。首先,我们简要讨论了与顺序学习相关的常规秩估计算法。其次,我们详细回顾了顺序学习技术。第三,我们讨论了顺序学习在人脸年龄估计、历史彩色图像分类和审美质量评价三个视觉应用上的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Order Learning – An Overview
Order learning aims to learn the ordering relationship among objects by comparing them. Recently, several order learning techniques have achieved great performances on various computer vision tasks. In this paper, we provide an overview of these order learning techniques. First, we briefly discuss conventional rank estimation algorithms related to order learning. Second, we review the order learning techniques in detail. Third, we discuss the results of order learning on three vision applications: facial age estimation, historical color image (HCI) classification, and aesthetic quality assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APSIPA Transactions on Signal and Information Processing
APSIPA Transactions on Signal and Information Processing ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
8.60
自引率
6.20%
发文量
30
审稿时长
40 weeks
期刊最新文献
A Comprehensive Overview of Computational Nuclei Segmentation Methods in Digital Pathology Speech-and-Text Transformer: Exploiting Unpaired Text for End-to-End Speech Recognition GP-Net: A Lightweight Generative Convolutional Neural Network with Grasp Priority Reversible Data Hiding in Compressible Encrypted Images with Capacity Enhancement Convolutional Neural Networks Inference Memory Optimization with Receptive Field-Based Input Tiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1