通用图形处理单元上栈前Kirchhoff时间偏移的实际实现

IF 2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Acta Geophysica Pub Date : 2016-12-02 DOI:10.1515/acgeo-2016-0033
Guofeng Liu, C. Li
{"title":"通用图形处理单元上栈前Kirchhoff时间偏移的实际实现","authors":"Guofeng Liu, C. Li","doi":"10.1515/acgeo-2016-0033","DOIUrl":null,"url":null,"abstract":"In this study, we present a practical implementation of prestack Kirchhoff time migration (PSTM) on a general purpose graphic processing unit. First, we consider the three main optimizations of the PSTM GPU code, i.e., designing a configuration based on a reasonable execution, using the texture memory for velocity interpolation, and the application of an intrinsic function in device code. This approach can achieve a speedup of nearly 45 times on a NVIDIA GTX 680 GPU compared with CPU code when a larger imaging space is used, where the PSTM output is a common reflection point that is gathered as I[nx][ny][nh][nt] in matrix format. However, this method requires more memory space so the limited imaging space cannot fully exploit the GPU sources. To overcome this problem, we designed a PSTM scheme with multi-GPUs for imaging different seismic data on different GPUs using an offset value. This process can achieve the peak speedup of GPU PSTM code and it greatly increases the efficiency of the calculations, but without changing the imaging result.","PeriodicalId":50898,"journal":{"name":"Acta Geophysica","volume":"64 1","pages":"1051-1063"},"PeriodicalIF":2.0000,"publicationDate":"2016-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/acgeo-2016-0033","citationCount":"3","resultStr":"{\"title\":\"Practical Implementation of Prestack Kirchhoff Time Migration on a General Purpose Graphics Processing Unit\",\"authors\":\"Guofeng Liu, C. Li\",\"doi\":\"10.1515/acgeo-2016-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a practical implementation of prestack Kirchhoff time migration (PSTM) on a general purpose graphic processing unit. First, we consider the three main optimizations of the PSTM GPU code, i.e., designing a configuration based on a reasonable execution, using the texture memory for velocity interpolation, and the application of an intrinsic function in device code. This approach can achieve a speedup of nearly 45 times on a NVIDIA GTX 680 GPU compared with CPU code when a larger imaging space is used, where the PSTM output is a common reflection point that is gathered as I[nx][ny][nh][nt] in matrix format. However, this method requires more memory space so the limited imaging space cannot fully exploit the GPU sources. To overcome this problem, we designed a PSTM scheme with multi-GPUs for imaging different seismic data on different GPUs using an offset value. This process can achieve the peak speedup of GPU PSTM code and it greatly increases the efficiency of the calculations, but without changing the imaging result.\",\"PeriodicalId\":50898,\"journal\":{\"name\":\"Acta Geophysica\",\"volume\":\"64 1\",\"pages\":\"1051-1063\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2016-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/acgeo-2016-0033\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/acgeo-2016-0033\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/acgeo-2016-0033","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

在这项研究中,我们提出了在通用图形处理单元上的叠前基尔霍夫时间偏移(PSTM)的实际实现。首先,我们考虑了PSTM GPU代码的三个主要优化,即设计基于合理执行的配置,使用纹理存储器进行速度插值,以及在设备代码中应用固有函数。当使用更大的成像空间时,这种方法在NVIDIA GTX 680 GPU上与CPU代码相比可以实现近45倍的加速,其中PSTM输出是一个以矩阵格式收集为I[nx][ny][nh][nt]的公共反射点。然而,这种方法需要更多的内存空间,因此有限的成像空间不能充分利用GPU源。为了克服这个问题,我们设计了一个多gpu的PSTM方案,使用偏移值在不同的gpu上对不同的地震数据进行成像。在不改变成像结果的前提下,实现了GPU PSTM代码的峰值加速,大大提高了计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical Implementation of Prestack Kirchhoff Time Migration on a General Purpose Graphics Processing Unit
In this study, we present a practical implementation of prestack Kirchhoff time migration (PSTM) on a general purpose graphic processing unit. First, we consider the three main optimizations of the PSTM GPU code, i.e., designing a configuration based on a reasonable execution, using the texture memory for velocity interpolation, and the application of an intrinsic function in device code. This approach can achieve a speedup of nearly 45 times on a NVIDIA GTX 680 GPU compared with CPU code when a larger imaging space is used, where the PSTM output is a common reflection point that is gathered as I[nx][ny][nh][nt] in matrix format. However, this method requires more memory space so the limited imaging space cannot fully exploit the GPU sources. To overcome this problem, we designed a PSTM scheme with multi-GPUs for imaging different seismic data on different GPUs using an offset value. This process can achieve the peak speedup of GPU PSTM code and it greatly increases the efficiency of the calculations, but without changing the imaging result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geophysica
Acta Geophysica 地学-地球化学与地球物理
CiteScore
3.90
自引率
13.00%
发文量
251
审稿时长
5.3 months
期刊介绍: Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.
期刊最新文献
Correction to: Groundwater-level prediction in Visakhapatnam district, Andhra Pradesh, India, using Bayesian Neural Networks Investigating the spatial and temporal variation of aerosols and cloud parameters over South Asia using remote sensing Novel hybrid computational intelligence approaches for predicting daily solar radiation SMAP products for prediction of surface soil moisture by ELM network model and agricultural drought index Identification of sediment–basement structure in West Papua province, Indonesia, using gravity and magnetic data inversion as an Earth’s crust stress indicator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1