{"title":"时变窗长时频峰值滤波去除地震数据中的随机噪声","authors":"Pengjun Yu, Yue Li, Hongbo Lin, N. Wu","doi":"10.1515/acgeo-2016-0059","DOIUrl":null,"url":null,"abstract":"Time-frequency peak filtering (TFPF) is an effective tool for the removal of random noise and can be used to process seismic data with a low signal- to-noise ratio. A crucial aspect of this algorithm is the choice of window length (WL) of the time-frequency distribution. Whereas a fixed WL cannot simultaneously preserve signal and attenuate noise, timevarying WLs can achieve this goal. We propose a new method, L-DVV (delay vector variance), which successfully processes non-stationary signals by using the surrogate to measure the non-linearity of a time series. This method is sensitive to random noise and can accurately recover seismic signal masked by noise. Since the linearity criterion also meets the unbiased estimation criterion of the TFPF algorithm, the L-DVV method can be used for time-varying WL TFPF processing. Analysis of synthetic and real seismic data shows that the time-varying WL TFPF algorithm is effective at removing noise and recovering seismic signal.","PeriodicalId":50898,"journal":{"name":"Acta Geophysica","volume":"64 1","pages":"1703-1714"},"PeriodicalIF":2.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/acgeo-2016-0059","citationCount":"11","resultStr":"{\"title\":\"Removal of Random Noise in Seismic Data by Time-varying Window-length Time-frequency Peak Filtering\",\"authors\":\"Pengjun Yu, Yue Li, Hongbo Lin, N. Wu\",\"doi\":\"10.1515/acgeo-2016-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-frequency peak filtering (TFPF) is an effective tool for the removal of random noise and can be used to process seismic data with a low signal- to-noise ratio. A crucial aspect of this algorithm is the choice of window length (WL) of the time-frequency distribution. Whereas a fixed WL cannot simultaneously preserve signal and attenuate noise, timevarying WLs can achieve this goal. We propose a new method, L-DVV (delay vector variance), which successfully processes non-stationary signals by using the surrogate to measure the non-linearity of a time series. This method is sensitive to random noise and can accurately recover seismic signal masked by noise. Since the linearity criterion also meets the unbiased estimation criterion of the TFPF algorithm, the L-DVV method can be used for time-varying WL TFPF processing. Analysis of synthetic and real seismic data shows that the time-varying WL TFPF algorithm is effective at removing noise and recovering seismic signal.\",\"PeriodicalId\":50898,\"journal\":{\"name\":\"Acta Geophysica\",\"volume\":\"64 1\",\"pages\":\"1703-1714\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/acgeo-2016-0059\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/acgeo-2016-0059\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/acgeo-2016-0059","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Removal of Random Noise in Seismic Data by Time-varying Window-length Time-frequency Peak Filtering
Time-frequency peak filtering (TFPF) is an effective tool for the removal of random noise and can be used to process seismic data with a low signal- to-noise ratio. A crucial aspect of this algorithm is the choice of window length (WL) of the time-frequency distribution. Whereas a fixed WL cannot simultaneously preserve signal and attenuate noise, timevarying WLs can achieve this goal. We propose a new method, L-DVV (delay vector variance), which successfully processes non-stationary signals by using the surrogate to measure the non-linearity of a time series. This method is sensitive to random noise and can accurately recover seismic signal masked by noise. Since the linearity criterion also meets the unbiased estimation criterion of the TFPF algorithm, the L-DVV method can be used for time-varying WL TFPF processing. Analysis of synthetic and real seismic data shows that the time-varying WL TFPF algorithm is effective at removing noise and recovering seismic signal.
期刊介绍:
Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.