越南龟龙盆地花岗岩基底上部断裂带地震资料处理与解释的改进

IF 2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Acta Geophysica Pub Date : 2016-12-01 DOI:10.1515/acgeo-2016-0082
M. T. Tân, M. Ha, K. Marfurt, Nguyen Trung Hieu, Nguyen Thi My Hanh
{"title":"越南龟龙盆地花岗岩基底上部断裂带地震资料处理与解释的改进","authors":"M. T. Tân, M. Ha, K. Marfurt, Nguyen Trung Hieu, Nguyen Thi My Hanh","doi":"10.1515/acgeo-2016-0082","DOIUrl":null,"url":null,"abstract":"The fractured granite basement is the primary oil and gas reservoir in the Cuu Long Basin, Vietnam. Due to the complexity of this nonlayered unconventional target, combined with complicated fault and fracture systems, the seismic data quality near and within the basement section is very low. For this reason, it is important to apply improved seismic data processing workflows, filtering and migration techniques, as wells as attribute processing methods to enhance the imaging quality.Our studies show that applying different types of filters, including the f-k, Radon transform and Tau-P, improves signal to noise ratio, removing multiples, revealing basement’s top and its related fractured and fault zones. In addition, the application of multi-arrival-solution migration algorithms, such as Kirchhoff Migration and Controlled Beam Migration, provides improved imaging for identifying basement top and faults and fractures within the basement. Furthermore, the application of seismic attributes such as curvature, apparent dip, or energy gradient, is important in locating faults and fractures, whereas mapping of intensity and orientation of such structures assists the delineation of “sweet spots” and assists the planning of exploration.","PeriodicalId":50898,"journal":{"name":"Acta Geophysica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/acgeo-2016-0082","citationCount":"7","resultStr":"{\"title\":\"Enhancement of Seismic Data Processing and Interpretation of Fracture Zones on the Upper Part of Granitic Basement in Cuu Long Basin, Vietnam\",\"authors\":\"M. T. Tân, M. Ha, K. Marfurt, Nguyen Trung Hieu, Nguyen Thi My Hanh\",\"doi\":\"10.1515/acgeo-2016-0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fractured granite basement is the primary oil and gas reservoir in the Cuu Long Basin, Vietnam. Due to the complexity of this nonlayered unconventional target, combined with complicated fault and fracture systems, the seismic data quality near and within the basement section is very low. For this reason, it is important to apply improved seismic data processing workflows, filtering and migration techniques, as wells as attribute processing methods to enhance the imaging quality.Our studies show that applying different types of filters, including the f-k, Radon transform and Tau-P, improves signal to noise ratio, removing multiples, revealing basement’s top and its related fractured and fault zones. In addition, the application of multi-arrival-solution migration algorithms, such as Kirchhoff Migration and Controlled Beam Migration, provides improved imaging for identifying basement top and faults and fractures within the basement. Furthermore, the application of seismic attributes such as curvature, apparent dip, or energy gradient, is important in locating faults and fractures, whereas mapping of intensity and orientation of such structures assists the delineation of “sweet spots” and assists the planning of exploration.\",\"PeriodicalId\":50898,\"journal\":{\"name\":\"Acta Geophysica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/acgeo-2016-0082\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/acgeo-2016-0082\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/acgeo-2016-0082","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 7

摘要

裂缝性花岗岩基底是越南龟龙盆地的主要油气储集层。由于非层状非常规油气藏的复杂性,加上复杂的断裂和裂缝系统,基底段附近和基底段内的地震资料质量很低。因此,采用改进的地震数据处理流程、滤波和偏移技术以及属性处理方法来提高成像质量非常重要。研究表明,采用f-k变换、Radon变换和Tau-P等不同类型的滤波器,提高了信噪比,消除了倍数,揭示了基底顶部及其相关的裂缝和断裂带。此外,Kirchhoff偏移和可控波束偏移等多到达解偏移算法的应用,为识别基底顶部和基底内的断层和裂缝提供了改进的成像技术。此外,曲率、视倾角或能量梯度等地震属性的应用对断层和裂缝的定位很重要,而这些结构的强度和方向的测绘有助于划定“甜点”,并有助于勘探规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancement of Seismic Data Processing and Interpretation of Fracture Zones on the Upper Part of Granitic Basement in Cuu Long Basin, Vietnam
The fractured granite basement is the primary oil and gas reservoir in the Cuu Long Basin, Vietnam. Due to the complexity of this nonlayered unconventional target, combined with complicated fault and fracture systems, the seismic data quality near and within the basement section is very low. For this reason, it is important to apply improved seismic data processing workflows, filtering and migration techniques, as wells as attribute processing methods to enhance the imaging quality.Our studies show that applying different types of filters, including the f-k, Radon transform and Tau-P, improves signal to noise ratio, removing multiples, revealing basement’s top and its related fractured and fault zones. In addition, the application of multi-arrival-solution migration algorithms, such as Kirchhoff Migration and Controlled Beam Migration, provides improved imaging for identifying basement top and faults and fractures within the basement. Furthermore, the application of seismic attributes such as curvature, apparent dip, or energy gradient, is important in locating faults and fractures, whereas mapping of intensity and orientation of such structures assists the delineation of “sweet spots” and assists the planning of exploration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geophysica
Acta Geophysica 地学-地球化学与地球物理
CiteScore
3.90
自引率
13.00%
发文量
251
审稿时长
5.3 months
期刊介绍: Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.
期刊最新文献
Statistical modeling and mapping of rainfall in the endorheic basins of Northern Algeria: a comparison of spatial interpolation methods Time-lapse imaging of shallow water coastal regions using a portable ultra-high-resolution 3D seismic survey system: a case study from offshore Pohang, South Korea Correction to: Seasonal components in GPS displacement time series First generation of a three-dimensional tomographic model for the uppermost mantle beneath the Zagros collision zone—constraints from full-waveform inversion Fluvial ecology disasters: the impact of the Gliwice Canal on the ecological crisis in the Oder River basin, Poland (2022)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1