Paulina Szymańska, Witold Tisler, C. Schütz, A. Szymkiewicz, I. Neuweiler, R. Helmig
{"title":"含粗织构夹杂的多孔介质中空气捕集的实验与数值分析","authors":"Paulina Szymańska, Witold Tisler, C. Schütz, A. Szymkiewicz, I. Neuweiler, R. Helmig","doi":"10.1515/acgeo-2016-0095","DOIUrl":null,"url":null,"abstract":"The paper presents a 2D upward infiltration experiment performed on a model porous medium consisting of fine sand background with two inclusions made of coarser sands. The purpose of the experiment was to investigate the effects of structural air trapping, which occurs during infiltration as a result of heterogeneous material structure. The experiment shows that a significant amount of air becomes trapped in each of the inclusions. Numerical simulations were carried out using the two-phase water-air flow model and the Richards equation. The experimental results can be reproduced with good accuracy only using a two-phase flow model, which accounts for both structural and pore-scale trapping. On the other hand, the Richards equation was not able to represent the structural trapping caused by material heterogeneity.","PeriodicalId":50898,"journal":{"name":"Acta Geophysica","volume":"47 1","pages":"2487-2509"},"PeriodicalIF":2.0000,"publicationDate":"2016-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/acgeo-2016-0095","citationCount":"5","resultStr":"{\"title\":\"Experimental and Numerical Analysis of Air Trapping in a Porous Medium with Coarse Textured Inclusions\",\"authors\":\"Paulina Szymańska, Witold Tisler, C. Schütz, A. Szymkiewicz, I. Neuweiler, R. Helmig\",\"doi\":\"10.1515/acgeo-2016-0095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a 2D upward infiltration experiment performed on a model porous medium consisting of fine sand background with two inclusions made of coarser sands. The purpose of the experiment was to investigate the effects of structural air trapping, which occurs during infiltration as a result of heterogeneous material structure. The experiment shows that a significant amount of air becomes trapped in each of the inclusions. Numerical simulations were carried out using the two-phase water-air flow model and the Richards equation. The experimental results can be reproduced with good accuracy only using a two-phase flow model, which accounts for both structural and pore-scale trapping. On the other hand, the Richards equation was not able to represent the structural trapping caused by material heterogeneity.\",\"PeriodicalId\":50898,\"journal\":{\"name\":\"Acta Geophysica\",\"volume\":\"47 1\",\"pages\":\"2487-2509\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2016-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/acgeo-2016-0095\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/acgeo-2016-0095\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/acgeo-2016-0095","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Experimental and Numerical Analysis of Air Trapping in a Porous Medium with Coarse Textured Inclusions
The paper presents a 2D upward infiltration experiment performed on a model porous medium consisting of fine sand background with two inclusions made of coarser sands. The purpose of the experiment was to investigate the effects of structural air trapping, which occurs during infiltration as a result of heterogeneous material structure. The experiment shows that a significant amount of air becomes trapped in each of the inclusions. Numerical simulations were carried out using the two-phase water-air flow model and the Richards equation. The experimental results can be reproduced with good accuracy only using a two-phase flow model, which accounts for both structural and pore-scale trapping. On the other hand, the Richards equation was not able to represent the structural trapping caused by material heterogeneity.
期刊介绍:
Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.