{"title":"基于表面的CMP域内多次消去——陆地地震数据的理论与应用策略","authors":"Shiguang Deng, Wenjin Zhao, Zhiwei Liu","doi":"10.1515/acgeo-2016-0107","DOIUrl":null,"url":null,"abstract":"The data-driven internal multiple elimination (IME) method based on feedback model, which includes CFP-based, surface-based and inversion- based methods, are successfully applied to marine datasets. However, these methods are computationally expensive and not always straightforward on land datasets. In this paper, we first proved that the surface-based IME method, which is the most computationally efficient method among the three methods, can be derived from the CFP theory. Then we extend it to CMP domain under the assumption of locally lateral invariance of the earth, which makes it more computationally efficient. In addition, we proposed applying a time-variant taper based on the first Fresnel zone to predict the multiples more percisely. Besides, the improved S/N ratio and dense offset distribution can be obtained by using the CMP supergather, which makes the CMP-oriented method more suitable for land data. Some practical processing strategies are proposed via case study. The effectiveness of the proposed method is demonstrated with the application to synthetic and field data.","PeriodicalId":50898,"journal":{"name":"Acta Geophysica","volume":"64 1","pages":"2114-2135"},"PeriodicalIF":2.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/acgeo-2016-0107","citationCount":"0","resultStr":"{\"title\":\"Surface-based Internal Multiple Elimination in the CMP Domain — Theory and Application Strategies on Land Seismic Data\",\"authors\":\"Shiguang Deng, Wenjin Zhao, Zhiwei Liu\",\"doi\":\"10.1515/acgeo-2016-0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The data-driven internal multiple elimination (IME) method based on feedback model, which includes CFP-based, surface-based and inversion- based methods, are successfully applied to marine datasets. However, these methods are computationally expensive and not always straightforward on land datasets. In this paper, we first proved that the surface-based IME method, which is the most computationally efficient method among the three methods, can be derived from the CFP theory. Then we extend it to CMP domain under the assumption of locally lateral invariance of the earth, which makes it more computationally efficient. In addition, we proposed applying a time-variant taper based on the first Fresnel zone to predict the multiples more percisely. Besides, the improved S/N ratio and dense offset distribution can be obtained by using the CMP supergather, which makes the CMP-oriented method more suitable for land data. Some practical processing strategies are proposed via case study. The effectiveness of the proposed method is demonstrated with the application to synthetic and field data.\",\"PeriodicalId\":50898,\"journal\":{\"name\":\"Acta Geophysica\",\"volume\":\"64 1\",\"pages\":\"2114-2135\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/acgeo-2016-0107\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/acgeo-2016-0107\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/acgeo-2016-0107","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Surface-based Internal Multiple Elimination in the CMP Domain — Theory and Application Strategies on Land Seismic Data
The data-driven internal multiple elimination (IME) method based on feedback model, which includes CFP-based, surface-based and inversion- based methods, are successfully applied to marine datasets. However, these methods are computationally expensive and not always straightforward on land datasets. In this paper, we first proved that the surface-based IME method, which is the most computationally efficient method among the three methods, can be derived from the CFP theory. Then we extend it to CMP domain under the assumption of locally lateral invariance of the earth, which makes it more computationally efficient. In addition, we proposed applying a time-variant taper based on the first Fresnel zone to predict the multiples more percisely. Besides, the improved S/N ratio and dense offset distribution can be obtained by using the CMP supergather, which makes the CMP-oriented method more suitable for land data. Some practical processing strategies are proposed via case study. The effectiveness of the proposed method is demonstrated with the application to synthetic and field data.
期刊介绍:
Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.