{"title":"利用模拟GPS观测确定GOCE轨道的几种位势模式的比较","authors":"A. Bobojć","doi":"10.1515/acgeo-2016-0115","DOIUrl":null,"url":null,"abstract":"This work contains a comparative study of the performance of six geopotential models in an orbit estimation process of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. For testing, such models as ULUX_CHAMP2013S, ITG-GRACE 2010S, EIGEN-51C, EIGEN5S, EGM2008, EGM96, were adopted. Different sets of pseudo-range simulations along reference GOCE satellite orbital arcs were obtained using real orbits of the Global Positioning System satellites. These sets were the basic observation data used in the adjustment. The centimeter-accuracy Precise Science Orbit (PSO) for the GOCE satellite provided by the European Space Agency (ESA) was adopted as the GOCE reference orbit. Comparing various variants of the orbital solutions, the relative accuracy of geopotential models in an orbital aspect is determined. Full geopotential models were used in the adjustment process. The solutions were also determined taking into account truncated geopotential models. In such case, an accuracy of the solutions was slightly enhanced. Different arc lengths were taken for the computation.","PeriodicalId":50898,"journal":{"name":"Acta Geophysica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2016-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/acgeo-2016-0115","citationCount":"1","resultStr":"{\"title\":\"Comparison of Selected Geopotential Models in Terms of the GOCE Orbit Determination Using Simulated GPS Observations\",\"authors\":\"A. Bobojć\",\"doi\":\"10.1515/acgeo-2016-0115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work contains a comparative study of the performance of six geopotential models in an orbit estimation process of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. For testing, such models as ULUX_CHAMP2013S, ITG-GRACE 2010S, EIGEN-51C, EIGEN5S, EGM2008, EGM96, were adopted. Different sets of pseudo-range simulations along reference GOCE satellite orbital arcs were obtained using real orbits of the Global Positioning System satellites. These sets were the basic observation data used in the adjustment. The centimeter-accuracy Precise Science Orbit (PSO) for the GOCE satellite provided by the European Space Agency (ESA) was adopted as the GOCE reference orbit. Comparing various variants of the orbital solutions, the relative accuracy of geopotential models in an orbital aspect is determined. Full geopotential models were used in the adjustment process. The solutions were also determined taking into account truncated geopotential models. In such case, an accuracy of the solutions was slightly enhanced. Different arc lengths were taken for the computation.\",\"PeriodicalId\":50898,\"journal\":{\"name\":\"Acta Geophysica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2016-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/acgeo-2016-0115\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/acgeo-2016-0115\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/acgeo-2016-0115","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Comparison of Selected Geopotential Models in Terms of the GOCE Orbit Determination Using Simulated GPS Observations
This work contains a comparative study of the performance of six geopotential models in an orbit estimation process of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. For testing, such models as ULUX_CHAMP2013S, ITG-GRACE 2010S, EIGEN-51C, EIGEN5S, EGM2008, EGM96, were adopted. Different sets of pseudo-range simulations along reference GOCE satellite orbital arcs were obtained using real orbits of the Global Positioning System satellites. These sets were the basic observation data used in the adjustment. The centimeter-accuracy Precise Science Orbit (PSO) for the GOCE satellite provided by the European Space Agency (ESA) was adopted as the GOCE reference orbit. Comparing various variants of the orbital solutions, the relative accuracy of geopotential models in an orbital aspect is determined. Full geopotential models were used in the adjustment process. The solutions were also determined taking into account truncated geopotential models. In such case, an accuracy of the solutions was slightly enhanced. Different arc lengths were taken for the computation.
期刊介绍:
Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.