{"title":"热变性溶菌酶是一种有潜力的新型非酒精性呼吸道病毒消毒剂","authors":"Suqiong Huang, Zhenghua Wu, Bingjie Zhou, Xinhui Jiang, Dimitri Lavillette, Guorong Fan","doi":"10.1007/s12560-023-09556-1","DOIUrl":null,"url":null,"abstract":"<div><p>Respiratory diseases are significant recurrent threats to global public health. Since the 1918 Spanish flu pandemic, seasonal influenza viruses continue to cause epidemics around the world each year. More recently, the COVID-19 global pandemic conducted a public health crisis with more than 6 million deaths and it also severely affected the global economy. Due to the phenomenon that people get infection from objects carrying viruses, it has aroused people's attention to home disinfection. As there is no ideal existing common domestic disinfectant, new and safer antiviral disinfectants are urgently needed. Lysozyme is a natural antibacterial agent widespread in nature and widely used in healthcare and food industry because of is recognized safety. Recently, it has been shown that thermally denatured lysozyme has the ability to kill murine norovirus and hepatitis A virus. In our study, we also demonstrated that heat-denatured lysozyme (HDLz) had an antiviral effect against H1N1 influenza A virus, and we optimized its antiviral activities by testing different heating denaturation conditions, to generalize this property, using pseudotype virus neutralization assay, we found that HDLz can also inhibit the entry of H5N1, H5N6, and H7N1 avian influenza viruses as well as SARS-CoV and SARS-CoV-2 particles in cell with IC50 at the ng/mL range. Finally, using western blot analysis, we provide evidence that HDLz polymerization correlates with antiviral effect, which may be a precious possible quality control test. Altogether, our data support HDLz as a powerful anti-respiratory virus disinfectant as a sole or additive of current disinfectants to reduce concentration of toxic component.</p></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"15 3","pages":"212 - 223"},"PeriodicalIF":4.1000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12560-023-09556-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Heat-Denatured Lysozyme is a Novel Potential Non-alcoholic Disinfectant Against Respiratory Virus\",\"authors\":\"Suqiong Huang, Zhenghua Wu, Bingjie Zhou, Xinhui Jiang, Dimitri Lavillette, Guorong Fan\",\"doi\":\"10.1007/s12560-023-09556-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Respiratory diseases are significant recurrent threats to global public health. Since the 1918 Spanish flu pandemic, seasonal influenza viruses continue to cause epidemics around the world each year. More recently, the COVID-19 global pandemic conducted a public health crisis with more than 6 million deaths and it also severely affected the global economy. Due to the phenomenon that people get infection from objects carrying viruses, it has aroused people's attention to home disinfection. As there is no ideal existing common domestic disinfectant, new and safer antiviral disinfectants are urgently needed. Lysozyme is a natural antibacterial agent widespread in nature and widely used in healthcare and food industry because of is recognized safety. Recently, it has been shown that thermally denatured lysozyme has the ability to kill murine norovirus and hepatitis A virus. In our study, we also demonstrated that heat-denatured lysozyme (HDLz) had an antiviral effect against H1N1 influenza A virus, and we optimized its antiviral activities by testing different heating denaturation conditions, to generalize this property, using pseudotype virus neutralization assay, we found that HDLz can also inhibit the entry of H5N1, H5N6, and H7N1 avian influenza viruses as well as SARS-CoV and SARS-CoV-2 particles in cell with IC50 at the ng/mL range. Finally, using western blot analysis, we provide evidence that HDLz polymerization correlates with antiviral effect, which may be a precious possible quality control test. Altogether, our data support HDLz as a powerful anti-respiratory virus disinfectant as a sole or additive of current disinfectants to reduce concentration of toxic component.</p></div>\",\"PeriodicalId\":563,\"journal\":{\"name\":\"Food and Environmental Virology\",\"volume\":\"15 3\",\"pages\":\"212 - 223\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12560-023-09556-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Environmental Virology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12560-023-09556-1\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-023-09556-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Heat-Denatured Lysozyme is a Novel Potential Non-alcoholic Disinfectant Against Respiratory Virus
Respiratory diseases are significant recurrent threats to global public health. Since the 1918 Spanish flu pandemic, seasonal influenza viruses continue to cause epidemics around the world each year. More recently, the COVID-19 global pandemic conducted a public health crisis with more than 6 million deaths and it also severely affected the global economy. Due to the phenomenon that people get infection from objects carrying viruses, it has aroused people's attention to home disinfection. As there is no ideal existing common domestic disinfectant, new and safer antiviral disinfectants are urgently needed. Lysozyme is a natural antibacterial agent widespread in nature and widely used in healthcare and food industry because of is recognized safety. Recently, it has been shown that thermally denatured lysozyme has the ability to kill murine norovirus and hepatitis A virus. In our study, we also demonstrated that heat-denatured lysozyme (HDLz) had an antiviral effect against H1N1 influenza A virus, and we optimized its antiviral activities by testing different heating denaturation conditions, to generalize this property, using pseudotype virus neutralization assay, we found that HDLz can also inhibit the entry of H5N1, H5N6, and H7N1 avian influenza viruses as well as SARS-CoV and SARS-CoV-2 particles in cell with IC50 at the ng/mL range. Finally, using western blot analysis, we provide evidence that HDLz polymerization correlates with antiviral effect, which may be a precious possible quality control test. Altogether, our data support HDLz as a powerful anti-respiratory virus disinfectant as a sole or additive of current disinfectants to reduce concentration of toxic component.
期刊介绍:
Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.