V. Vlasenko, V. M. Mamarev, V. Ozhynsky, O. Ulyanov, V. Zakharenko, M. Palamar, A. Chaikovskyi, S. Fryz
{"title":"RT-32射电望远镜自动模式误差矩阵构造方法。跟踪错误的自动评估","authors":"V. Vlasenko, V. M. Mamarev, V. Ozhynsky, O. Ulyanov, V. Zakharenko, M. Palamar, A. Chaikovskyi, S. Fryz","doi":"10.15407/knit2021.06.053","DOIUrl":null,"url":null,"abstract":"On March 15th, 2021, scientists of the National Space Facilities Control and Tests Center and the Radio Astronomical Institute of the National Academy of Sciences of Ukraine carried out preliminary observations with the Ukrainian new generation radio telescope RT-32 (Zolochiv, Lviv region). The extragalactic radiation of radio galaxy 3C84 (Perseus-A), masers from the galactic molecular cloud W3, radio emission of methanol maser from the galactic radio source G188.946 + 0.886 were observed and successfully recorded. Observations were performed as training in the framework of preparation for the launch of a joint Ukrainian-Latvian radio astronomy project lzp-2020/2-0121. The results of the observations confirmed the world level of RT-32 radio telescope characteristics, the efficiency of the primary error matrix and revealed several shortcomings in the functioning of the tracking system. It was found that the primary tracking error matrix has insufficient discreteness and contains errors of the first and second types. In the article, we present a method of automatic construction of the radio telescope error matrix according to the data of a radiometric receiver and receivers-recorders. The method of construction provides automatic processing of the obtained radiometric data. The results of verification of the developed method using the reference radio sources of different types and the elements of tracking errors’ matrix by the elevation and azimuth obtained when using it are presented. The results obtained with the proposed method were included in the radio telescope control system and allowed us to increase the aiming accuracy of the RT-32 radio telescope.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The method for RT-32 radio telescope error matrix construction in automatic mode. Automatic assesment of tracking errors\",\"authors\":\"V. Vlasenko, V. M. Mamarev, V. Ozhynsky, O. Ulyanov, V. Zakharenko, M. Palamar, A. Chaikovskyi, S. Fryz\",\"doi\":\"10.15407/knit2021.06.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On March 15th, 2021, scientists of the National Space Facilities Control and Tests Center and the Radio Astronomical Institute of the National Academy of Sciences of Ukraine carried out preliminary observations with the Ukrainian new generation radio telescope RT-32 (Zolochiv, Lviv region). The extragalactic radiation of radio galaxy 3C84 (Perseus-A), masers from the galactic molecular cloud W3, radio emission of methanol maser from the galactic radio source G188.946 + 0.886 were observed and successfully recorded. Observations were performed as training in the framework of preparation for the launch of a joint Ukrainian-Latvian radio astronomy project lzp-2020/2-0121. The results of the observations confirmed the world level of RT-32 radio telescope characteristics, the efficiency of the primary error matrix and revealed several shortcomings in the functioning of the tracking system. It was found that the primary tracking error matrix has insufficient discreteness and contains errors of the first and second types. In the article, we present a method of automatic construction of the radio telescope error matrix according to the data of a radiometric receiver and receivers-recorders. The method of construction provides automatic processing of the obtained radiometric data. The results of verification of the developed method using the reference radio sources of different types and the elements of tracking errors’ matrix by the elevation and azimuth obtained when using it are presented. The results obtained with the proposed method were included in the radio telescope control system and allowed us to increase the aiming accuracy of the RT-32 radio telescope.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/knit2021.06.053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/knit2021.06.053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The method for RT-32 radio telescope error matrix construction in automatic mode. Automatic assesment of tracking errors
On March 15th, 2021, scientists of the National Space Facilities Control and Tests Center and the Radio Astronomical Institute of the National Academy of Sciences of Ukraine carried out preliminary observations with the Ukrainian new generation radio telescope RT-32 (Zolochiv, Lviv region). The extragalactic radiation of radio galaxy 3C84 (Perseus-A), masers from the galactic molecular cloud W3, radio emission of methanol maser from the galactic radio source G188.946 + 0.886 were observed and successfully recorded. Observations were performed as training in the framework of preparation for the launch of a joint Ukrainian-Latvian radio astronomy project lzp-2020/2-0121. The results of the observations confirmed the world level of RT-32 radio telescope characteristics, the efficiency of the primary error matrix and revealed several shortcomings in the functioning of the tracking system. It was found that the primary tracking error matrix has insufficient discreteness and contains errors of the first and second types. In the article, we present a method of automatic construction of the radio telescope error matrix according to the data of a radiometric receiver and receivers-recorders. The method of construction provides automatic processing of the obtained radiometric data. The results of verification of the developed method using the reference radio sources of different types and the elements of tracking errors’ matrix by the elevation and azimuth obtained when using it are presented. The results obtained with the proposed method were included in the radio telescope control system and allowed us to increase the aiming accuracy of the RT-32 radio telescope.