{"title":"将地理信息技术纳入生物多样性保护和防止景观生物威胁的框架","authors":"T. Fedoniuk, О. Skydan","doi":"10.15407/knit2023.02.010","DOIUrl":null,"url":null,"abstract":"As the long-term sustainability of both natural and artificial phytocenoses is under serious threat from biological invaders, the global community is working hard to prevent invasions and rapidly eradicate or halt the spread of invasive species. By tracking the actual spread of “invaders” or predicting areas at risk of invasion, geographic information systems (GIS) and remote sensing of the Earth (RSE) can significantly assist the process of ensuring biosecurity at the state level. Research has shown the potential of remote sensing and GIS applications for invasive species mapping and modeling, even though it is currently restricted to a small number of taxa. This article gives examples of how GIS and RSE can be used to track invasive species like Utricularia australis R. br. and Lemna aequinoctialis Welw. To describe the distribution of species, current Internet databases of species distribution and the author’s own research were used. It also talks about promising ways to find and track the spread of invasive species, like using NDVI indices, chlorophyll and xanthophyll content to find changes in regional biodiversity, some problems with finding changes in biodiversity in agricultural landscapes, and mapping invasion risk. The study also demonstrates how GIS technology may be used to identify agricultural landscape biodiversity using radiometric space data from Sentinel 1, followed by a verification of the findings. The prospects of spatial, spectral, and temporal analysis of images are determined, as they make it possible to outline the boundaries of ecosystems, biometric characteristics of species, characteristics of their current and potential areas of distribution, etc.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"INCORPORATING GEOGRAPHIC INFORMATION TECHNOLOGIES INTO A FRAMEWORK FOR BIOLOGICAL DIVERSITY CONSERVATION AND PREVENTING BIOLOGICAL THREATS TO LANDSCAPES\",\"authors\":\"T. Fedoniuk, О. Skydan\",\"doi\":\"10.15407/knit2023.02.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the long-term sustainability of both natural and artificial phytocenoses is under serious threat from biological invaders, the global community is working hard to prevent invasions and rapidly eradicate or halt the spread of invasive species. By tracking the actual spread of “invaders” or predicting areas at risk of invasion, geographic information systems (GIS) and remote sensing of the Earth (RSE) can significantly assist the process of ensuring biosecurity at the state level. Research has shown the potential of remote sensing and GIS applications for invasive species mapping and modeling, even though it is currently restricted to a small number of taxa. This article gives examples of how GIS and RSE can be used to track invasive species like Utricularia australis R. br. and Lemna aequinoctialis Welw. To describe the distribution of species, current Internet databases of species distribution and the author’s own research were used. It also talks about promising ways to find and track the spread of invasive species, like using NDVI indices, chlorophyll and xanthophyll content to find changes in regional biodiversity, some problems with finding changes in biodiversity in agricultural landscapes, and mapping invasion risk. The study also demonstrates how GIS technology may be used to identify agricultural landscape biodiversity using radiometric space data from Sentinel 1, followed by a verification of the findings. The prospects of spatial, spectral, and temporal analysis of images are determined, as they make it possible to outline the boundaries of ecosystems, biometric characteristics of species, characteristics of their current and potential areas of distribution, etc.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/knit2023.02.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/knit2023.02.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INCORPORATING GEOGRAPHIC INFORMATION TECHNOLOGIES INTO A FRAMEWORK FOR BIOLOGICAL DIVERSITY CONSERVATION AND PREVENTING BIOLOGICAL THREATS TO LANDSCAPES
As the long-term sustainability of both natural and artificial phytocenoses is under serious threat from biological invaders, the global community is working hard to prevent invasions and rapidly eradicate or halt the spread of invasive species. By tracking the actual spread of “invaders” or predicting areas at risk of invasion, geographic information systems (GIS) and remote sensing of the Earth (RSE) can significantly assist the process of ensuring biosecurity at the state level. Research has shown the potential of remote sensing and GIS applications for invasive species mapping and modeling, even though it is currently restricted to a small number of taxa. This article gives examples of how GIS and RSE can be used to track invasive species like Utricularia australis R. br. and Lemna aequinoctialis Welw. To describe the distribution of species, current Internet databases of species distribution and the author’s own research were used. It also talks about promising ways to find and track the spread of invasive species, like using NDVI indices, chlorophyll and xanthophyll content to find changes in regional biodiversity, some problems with finding changes in biodiversity in agricultural landscapes, and mapping invasion risk. The study also demonstrates how GIS technology may be used to identify agricultural landscape biodiversity using radiometric space data from Sentinel 1, followed by a verification of the findings. The prospects of spatial, spectral, and temporal analysis of images are determined, as they make it possible to outline the boundaries of ecosystems, biometric characteristics of species, characteristics of their current and potential areas of distribution, etc.