利用机器学习技术对智能道路交通拥堵控制系统进行建模

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Network World Pub Date : 2019-01-01 DOI:10.14311/NNW.2019.29.008
A. Ata, Muhammad Adnan Khan, Sagheer Abbas, Gulzar Ahmad, A. Fatima
{"title":"利用机器学习技术对智能道路交通拥堵控制系统进行建模","authors":"A. Ata, Muhammad Adnan Khan, Sagheer Abbas, Gulzar Ahmad, A. Fatima","doi":"10.14311/NNW.2019.29.008","DOIUrl":null,"url":null,"abstract":": By the dramatic growth of the population in cities requires the traf-fic systems to be designed efficiently and sustainably by taking full advantage of modern-day technology. Dynamic traffic flow is a significant issue which brings about a block of traffic movement. Thus, for tackling this issue, this paper aims to provide a mechanism to predict the traffic congestion with the help of Artificial Neural Networks (ANN) which shall control or minimize the blockage and result in the smoothening of road traffic. Proposed Modeling Smart Road Traffic Congestion Control using Artificial Back Propagation Neural Networks (MSR2C-ABPNN) for road traffic increase transparency, availability and efficiency in services offered to the citizens. In this paper, the prediction of congestion is operationalized by using the algorithm of backpropagation to train the neural network. The proposed system aims to provide a solution that will increase the comfort level of travellers to make intelligent and better transportation decision, and the neural network is a plausible approach to find traffic situations. Proposed MSR2C-ABPNN with Time series gives attractive results concerning MSE as compared to the fitting approach.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"126 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"MODELLING SMART ROAD TRAFFIC CONGESTION CONTROL SYSTEM USING MACHINE LEARNING TECHNIQUES\",\"authors\":\"A. Ata, Muhammad Adnan Khan, Sagheer Abbas, Gulzar Ahmad, A. Fatima\",\"doi\":\"10.14311/NNW.2019.29.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": By the dramatic growth of the population in cities requires the traf-fic systems to be designed efficiently and sustainably by taking full advantage of modern-day technology. Dynamic traffic flow is a significant issue which brings about a block of traffic movement. Thus, for tackling this issue, this paper aims to provide a mechanism to predict the traffic congestion with the help of Artificial Neural Networks (ANN) which shall control or minimize the blockage and result in the smoothening of road traffic. Proposed Modeling Smart Road Traffic Congestion Control using Artificial Back Propagation Neural Networks (MSR2C-ABPNN) for road traffic increase transparency, availability and efficiency in services offered to the citizens. In this paper, the prediction of congestion is operationalized by using the algorithm of backpropagation to train the neural network. The proposed system aims to provide a solution that will increase the comfort level of travellers to make intelligent and better transportation decision, and the neural network is a plausible approach to find traffic situations. Proposed MSR2C-ABPNN with Time series gives attractive results concerning MSE as compared to the fitting approach.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/NNW.2019.29.008\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/NNW.2019.29.008","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 54

摘要

由于城市人口的急剧增长,要求充分利用现代技术,设计高效、可持续的交通系统。动态交通流是造成交通阻塞的一个重要问题。因此,为了解决这一问题,本文旨在提供一种利用人工神经网络(Artificial Neural Networks, ANN)来预测交通拥堵的机制,从而控制或最小化拥堵,使道路交通更加顺畅。建议使用人工反向传播神经网络(MSR2C-ABPNN)建模智能道路交通拥堵控制,以提高向市民提供服务的透明度、可用性和效率。本文采用反向传播算法对神经网络进行训练,实现了对拥塞的预测。该系统旨在提供一种解决方案,提高旅行者的舒适度,从而做出更智能、更好的交通决策,而神经网络是一种合理的方法来发现交通状况。与拟合方法相比,采用时间序列的MSR2C-ABPNN在MSE方面得到了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MODELLING SMART ROAD TRAFFIC CONGESTION CONTROL SYSTEM USING MACHINE LEARNING TECHNIQUES
: By the dramatic growth of the population in cities requires the traf-fic systems to be designed efficiently and sustainably by taking full advantage of modern-day technology. Dynamic traffic flow is a significant issue which brings about a block of traffic movement. Thus, for tackling this issue, this paper aims to provide a mechanism to predict the traffic congestion with the help of Artificial Neural Networks (ANN) which shall control or minimize the blockage and result in the smoothening of road traffic. Proposed Modeling Smart Road Traffic Congestion Control using Artificial Back Propagation Neural Networks (MSR2C-ABPNN) for road traffic increase transparency, availability and efficiency in services offered to the citizens. In this paper, the prediction of congestion is operationalized by using the algorithm of backpropagation to train the neural network. The proposed system aims to provide a solution that will increase the comfort level of travellers to make intelligent and better transportation decision, and the neural network is a plausible approach to find traffic situations. Proposed MSR2C-ABPNN with Time series gives attractive results concerning MSE as compared to the fitting approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
期刊最新文献
Water quality image classification for aquaculture using deep transfer learning Enhanced QOS energy-efficient routing algorithm using deep belief neural network in hybrid falcon-improved ACO nature-inspired optimization in wireless sensor networks Vibration analyses of railway systems using proposed neural predictors A self-adaptive deep learning-based model to predict cloud workload Integration of railway infrastructure topological description elements from the microL2 to the macroN0,L0 level of detail
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1