{"title":"基于生物启发策略的启发式平行LDTW距离优化方法","authors":"Jin Dai, Yuhong He, Jiayao Li","doi":"10.14311/NNW.2021.31.001","DOIUrl":null,"url":null,"abstract":"Dynamic time warping (DTW) is a classical similarity measure for arbitrary length time series. As an effective improvement of DTW, dynamic time warping under limited warping path length (LDTW) oppresses the long-term pathological alignment problem and allows better flexibility. However, since LDTW increases path lengths, it directly leads to higher time-consuming. In this paper, a new method of similarity sequence measurement (ACO LDTW) is proposed by the parallel computing characteristics of ant colony optimization (ACO) algorithm with bio-inspired strategy and the idea of LDTW path restriction. This algorithm searches the optimal path on the restricted distance matrix by simulating the behavior of ant colony parallel foraging. Firstly, the distance matrix is mapped to the 0− 1 matrix of grid method, and the search range of ants is limited by the warping path in LDTW. Secondly, the state transition probability function, pheromone initialization and update mechanism of ACO algorithm are adapted. On the basis of ensuring the accurate results, the convergence rate can be effectively improved. The validity of ACO LDTW is verified by cases. In the 22 data sets of 1NN classification experiment, ACO LDTW has the lowest classification error rate in 16 data sets, and it is shorter than the calculation time of LDTW. At the same time, it is applied to the field of mechanical fault diagnosis and has the ability to solve practical engineering applications. Experiments show that ACO LDTW is more effective in terms of accuracy and computation time.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"31 1","pages":"1-28"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An approach for heuristic parallel LDTW distance optimization method with bio-inspired strategy\",\"authors\":\"Jin Dai, Yuhong He, Jiayao Li\",\"doi\":\"10.14311/NNW.2021.31.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic time warping (DTW) is a classical similarity measure for arbitrary length time series. As an effective improvement of DTW, dynamic time warping under limited warping path length (LDTW) oppresses the long-term pathological alignment problem and allows better flexibility. However, since LDTW increases path lengths, it directly leads to higher time-consuming. In this paper, a new method of similarity sequence measurement (ACO LDTW) is proposed by the parallel computing characteristics of ant colony optimization (ACO) algorithm with bio-inspired strategy and the idea of LDTW path restriction. This algorithm searches the optimal path on the restricted distance matrix by simulating the behavior of ant colony parallel foraging. Firstly, the distance matrix is mapped to the 0− 1 matrix of grid method, and the search range of ants is limited by the warping path in LDTW. Secondly, the state transition probability function, pheromone initialization and update mechanism of ACO algorithm are adapted. On the basis of ensuring the accurate results, the convergence rate can be effectively improved. The validity of ACO LDTW is verified by cases. In the 22 data sets of 1NN classification experiment, ACO LDTW has the lowest classification error rate in 16 data sets, and it is shorter than the calculation time of LDTW. At the same time, it is applied to the field of mechanical fault diagnosis and has the ability to solve practical engineering applications. Experiments show that ACO LDTW is more effective in terms of accuracy and computation time.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"31 1\",\"pages\":\"1-28\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/NNW.2021.31.001\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/NNW.2021.31.001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An approach for heuristic parallel LDTW distance optimization method with bio-inspired strategy
Dynamic time warping (DTW) is a classical similarity measure for arbitrary length time series. As an effective improvement of DTW, dynamic time warping under limited warping path length (LDTW) oppresses the long-term pathological alignment problem and allows better flexibility. However, since LDTW increases path lengths, it directly leads to higher time-consuming. In this paper, a new method of similarity sequence measurement (ACO LDTW) is proposed by the parallel computing characteristics of ant colony optimization (ACO) algorithm with bio-inspired strategy and the idea of LDTW path restriction. This algorithm searches the optimal path on the restricted distance matrix by simulating the behavior of ant colony parallel foraging. Firstly, the distance matrix is mapped to the 0− 1 matrix of grid method, and the search range of ants is limited by the warping path in LDTW. Secondly, the state transition probability function, pheromone initialization and update mechanism of ACO algorithm are adapted. On the basis of ensuring the accurate results, the convergence rate can be effectively improved. The validity of ACO LDTW is verified by cases. In the 22 data sets of 1NN classification experiment, ACO LDTW has the lowest classification error rate in 16 data sets, and it is shorter than the calculation time of LDTW. At the same time, it is applied to the field of mechanical fault diagnosis and has the ability to solve practical engineering applications. Experiments show that ACO LDTW is more effective in terms of accuracy and computation time.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.