Anosh Babu P. Samson, Sekhara Rao Annavarapu Chandra, Manikant Manikant
{"title":"预测蛋白质亚细胞定位的深度神经网络方法","authors":"Anosh Babu P. Samson, Sekhara Rao Annavarapu Chandra, Manikant Manikant","doi":"10.14311/NNW.2021.31.002","DOIUrl":null,"url":null,"abstract":": The subcellular localization of proteins is an essential characteristic of human cells, which plays a vital part in understanding distinct functions and cells’ biological processes. The abnormal protein subcellular localization affects protein functionality and may cause many human diseases ranging from metabolic disorders to cancer. Therefore, the prediction of subcellular locations of the proteins is an important task. Artificial neural network has become a popular research topic in machine learning that can achieve remarkable results in learning high-level latent traits. This paper proposes a deep neural network (DNN) model to predict the human protein subcellular locations. The DNN automatically learns high-level representations of abstract features and proteins by examining nonlinear relationships between different subcellular locations. The experimental results have shown that the proposed method gave better results compared with the classical machine learning techniques such as support vector machine and random forest. This model also outperformed the similar model, which uses stacked auto-encoder (SAE) with a softmax classifier.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"31 1","pages":"29-45"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A deep neural network approach for the prediction of protein subcellular localization\",\"authors\":\"Anosh Babu P. Samson, Sekhara Rao Annavarapu Chandra, Manikant Manikant\",\"doi\":\"10.14311/NNW.2021.31.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The subcellular localization of proteins is an essential characteristic of human cells, which plays a vital part in understanding distinct functions and cells’ biological processes. The abnormal protein subcellular localization affects protein functionality and may cause many human diseases ranging from metabolic disorders to cancer. Therefore, the prediction of subcellular locations of the proteins is an important task. Artificial neural network has become a popular research topic in machine learning that can achieve remarkable results in learning high-level latent traits. This paper proposes a deep neural network (DNN) model to predict the human protein subcellular locations. The DNN automatically learns high-level representations of abstract features and proteins by examining nonlinear relationships between different subcellular locations. The experimental results have shown that the proposed method gave better results compared with the classical machine learning techniques such as support vector machine and random forest. This model also outperformed the similar model, which uses stacked auto-encoder (SAE) with a softmax classifier.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"31 1\",\"pages\":\"29-45\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/NNW.2021.31.002\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/NNW.2021.31.002","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A deep neural network approach for the prediction of protein subcellular localization
: The subcellular localization of proteins is an essential characteristic of human cells, which plays a vital part in understanding distinct functions and cells’ biological processes. The abnormal protein subcellular localization affects protein functionality and may cause many human diseases ranging from metabolic disorders to cancer. Therefore, the prediction of subcellular locations of the proteins is an important task. Artificial neural network has become a popular research topic in machine learning that can achieve remarkable results in learning high-level latent traits. This paper proposes a deep neural network (DNN) model to predict the human protein subcellular locations. The DNN automatically learns high-level representations of abstract features and proteins by examining nonlinear relationships between different subcellular locations. The experimental results have shown that the proposed method gave better results compared with the classical machine learning techniques such as support vector machine and random forest. This model also outperformed the similar model, which uses stacked auto-encoder (SAE) with a softmax classifier.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.