Nils Weiss, Enrico Pozzobon, J. Mottok, V. Matousek
{"title":"CAN协议的自动逆向工程","authors":"Nils Weiss, Enrico Pozzobon, J. Mottok, V. Matousek","doi":"10.14311/nnw.2021.31.015","DOIUrl":null,"url":null,"abstract":"Car manufacturers define proprietary protocols to be used inside their vehicular networks, which are kept an industrial secret, therefore impeding independent researchers from extracting information from these networks. This article describes a statistical and a neural network approach that allows reverse engineering proprietary controller area network (CAN)-protocols assuming they were designed using the data base CAN (DBC) file format. The proposed algorithms are tested with CAN traces taken from a real car. We show that our approaches can correctly reverse engineer CAN messages in an automated manner.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Reverse Engineering of CAN Protocols\",\"authors\":\"Nils Weiss, Enrico Pozzobon, J. Mottok, V. Matousek\",\"doi\":\"10.14311/nnw.2021.31.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Car manufacturers define proprietary protocols to be used inside their vehicular networks, which are kept an industrial secret, therefore impeding independent researchers from extracting information from these networks. This article describes a statistical and a neural network approach that allows reverse engineering proprietary controller area network (CAN)-protocols assuming they were designed using the data base CAN (DBC) file format. The proposed algorithms are tested with CAN traces taken from a real car. We show that our approaches can correctly reverse engineer CAN messages in an automated manner.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2021.31.015\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2021.31.015","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Car manufacturers define proprietary protocols to be used inside their vehicular networks, which are kept an industrial secret, therefore impeding independent researchers from extracting information from these networks. This article describes a statistical and a neural network approach that allows reverse engineering proprietary controller area network (CAN)-protocols assuming they were designed using the data base CAN (DBC) file format. The proposed algorithms are tested with CAN traces taken from a real car. We show that our approaches can correctly reverse engineer CAN messages in an automated manner.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.