乌克兰盾korsun - novmyrhorod岩体中锆石熔体包裹体形成的Velyka - Vyska正长岩体

IF 0.5 Q4 MINERALOGY Mineralogical Journal-Ukraine Pub Date : 2021-01-01 DOI:10.15407/MINERALJOURNAL.43.01.003
D. Voznyak, E. ., LEVASHOVA, S. Skublov, S. Kryvdik, O. Vyshnevskyi, V. Belskyi, S. Kurylo
{"title":"乌克兰盾korsun - novmyrhorod岩体中锆石熔体包裹体形成的Velyka - Vyska正长岩体","authors":"D. Voznyak, E. ., LEVASHOVA, S. Skublov, S. Kryvdik, O. Vyshnevskyi, V. Belskyi, S. Kurylo","doi":"10.15407/MINERALJOURNAL.43.01.003","DOIUrl":null,"url":null,"abstract":"The formation of leucosyenites in the Velyka Vyska syenite massif was provoked by the liquation layering of magmatic melt. This assumption is based on the presence of two primary melt inclusions of different chemical composition in zircon crystals from Velyka Vyska leucosyenites. They correspond to two types of silicate melts. Type I is a leucosyenite type that contains high SiO2 concentrations (these inclusions dominate quantitatively); type II is a melanosyenite type that contains elevated Fe and smaller SiO2 concentrations. The liquation layering of magmatic melt was slow because the liquates are similar in density; leucosyenite melt, which is more abundant than melt of melanosyenite composition, displays greater dynamic viscosity; the initial sizes of embryos of melanosyenite composition are microscopic. Sulphide melt, similar in composition to pyrrhotite, was also involved in the formation of the massif. Zircon was crystallized at temperatures over 1300°С, as indicated by the homogenization temperatures of primary melt inclusions. The REE distribution spectra of the main parts (or zones,) of zircon crystals from the Velyka Vyska massif are identical to those of zircon from the Azov and Yastrubets syenite massifs with which high-grade Zr and REE (Azov and Yastrubets) ore deposits are associated. They are characteristic of magmatically generated zircon. Some of the grains analyzed contain rims that are contrasting against the matrix of a crystal, look dark-grey in the BSE image and display flattened REE distribution spectra. Such spectra are also typical of baddeleyite, which formed by the partial replacement of zircon crystals. The formation of a dark-grey rim in zircon and baddeleyite is attributed to the strong effect of high-pressure СО2-fluid on the rock. The formation patterns of the Velyka Vyska and Azov massifs exhibit some common features: (а) silicate melt liquation; (b) high ZrO2 concentrations in glasses from hardened primary melt inclusions; (c) the supply of high-pressure СО2-fluid flows into Velyka Vyska and Azov hard rocks. Similar conditions of formation suggest the occurrence of high-grade Zr and REE ores in the Velyka Vyska syenite massif.","PeriodicalId":53834,"journal":{"name":"Mineralogical Journal-Ukraine","volume":"43 1","pages":"3-15"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Formation Mechanism of the Velyka Vyska Syenite Massif (Korsun-Novomyrhorod Pluton, Ukrainian Shield) Derived from Melt Inclusions in Zircon\",\"authors\":\"D. Voznyak, E. ., LEVASHOVA, S. Skublov, S. Kryvdik, O. Vyshnevskyi, V. Belskyi, S. Kurylo\",\"doi\":\"10.15407/MINERALJOURNAL.43.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formation of leucosyenites in the Velyka Vyska syenite massif was provoked by the liquation layering of magmatic melt. This assumption is based on the presence of two primary melt inclusions of different chemical composition in zircon crystals from Velyka Vyska leucosyenites. They correspond to two types of silicate melts. Type I is a leucosyenite type that contains high SiO2 concentrations (these inclusions dominate quantitatively); type II is a melanosyenite type that contains elevated Fe and smaller SiO2 concentrations. The liquation layering of magmatic melt was slow because the liquates are similar in density; leucosyenite melt, which is more abundant than melt of melanosyenite composition, displays greater dynamic viscosity; the initial sizes of embryos of melanosyenite composition are microscopic. Sulphide melt, similar in composition to pyrrhotite, was also involved in the formation of the massif. Zircon was crystallized at temperatures over 1300°С, as indicated by the homogenization temperatures of primary melt inclusions. The REE distribution spectra of the main parts (or zones,) of zircon crystals from the Velyka Vyska massif are identical to those of zircon from the Azov and Yastrubets syenite massifs with which high-grade Zr and REE (Azov and Yastrubets) ore deposits are associated. They are characteristic of magmatically generated zircon. Some of the grains analyzed contain rims that are contrasting against the matrix of a crystal, look dark-grey in the BSE image and display flattened REE distribution spectra. Such spectra are also typical of baddeleyite, which formed by the partial replacement of zircon crystals. The formation of a dark-grey rim in zircon and baddeleyite is attributed to the strong effect of high-pressure СО2-fluid on the rock. The formation patterns of the Velyka Vyska and Azov massifs exhibit some common features: (а) silicate melt liquation; (b) high ZrO2 concentrations in glasses from hardened primary melt inclusions; (c) the supply of high-pressure СО2-fluid flows into Velyka Vyska and Azov hard rocks. Similar conditions of formation suggest the occurrence of high-grade Zr and REE ores in the Velyka Vyska syenite massif.\",\"PeriodicalId\":53834,\"journal\":{\"name\":\"Mineralogical Journal-Ukraine\",\"volume\":\"43 1\",\"pages\":\"3-15\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralogical Journal-Ukraine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/MINERALJOURNAL.43.01.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MINERALOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogical Journal-Ukraine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/MINERALJOURNAL.43.01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 1

摘要

维里卡-维斯卡正长岩体中浅正长岩的形成是由岩浆熔体液化分层引起的。这一假设是基于Velyka Vyska亮正长岩锆石晶体中存在两种不同化学成分的初级熔体包裹体。它们对应于两种硅酸盐熔体。ⅰ型为亮正长岩型,SiO2含量高(在数量上占主导地位);II型为黑正长岩型,铁含量较高,SiO2含量较低。岩浆熔体的液化分层速度较慢,因为液体密度相近;浅色正长岩熔体比黑色正长岩熔体更丰富,表现出更大的动态粘度;黑正长岩组成的胚胎的初始大小是显微的。与磁黄铁矿成分相似的硫化物熔体也参与了地块的形成。锆石的结晶温度在1300°С以上,由原生熔体包裹体的均一化温度可知。Velyka Vyska地块锆石晶体主体部分(或带)的稀土元素分布谱与与亚速和亚斯特鲁贝茨高品位Zr和REE(亚速和亚斯特鲁贝茨)矿床相关的亚速和亚斯特鲁贝茨正长岩体锆石的稀土元素分布谱相同。它们是岩浆成因锆石的特征。分析的一些颗粒含有与晶体基质形成对比的边缘,在BSE图像中看起来是深灰色的,并且显示出平坦的REE分布光谱。这种光谱也是由锆石晶体部分置换形成的坏辉石的典型特征。锆石和坏辉岩中深灰色边缘的形成归因于高压СО2-fluid对岩石的强烈影响。Velyka - Vyska和Azov地块的形成模式表现出一些共同的特征:(1)硅酸盐熔融液化;(b)硬化的原生熔体包裹体形成的玻璃中ZrO2浓度较高;(c)高压СО2-fluid的供应流入Velyka Vyska和Azov坚硬的岩石。类似的形成条件表明,维里卡-维斯卡正长岩体中赋存高品位的锆、稀土矿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formation Mechanism of the Velyka Vyska Syenite Massif (Korsun-Novomyrhorod Pluton, Ukrainian Shield) Derived from Melt Inclusions in Zircon
The formation of leucosyenites in the Velyka Vyska syenite massif was provoked by the liquation layering of magmatic melt. This assumption is based on the presence of two primary melt inclusions of different chemical composition in zircon crystals from Velyka Vyska leucosyenites. They correspond to two types of silicate melts. Type I is a leucosyenite type that contains high SiO2 concentrations (these inclusions dominate quantitatively); type II is a melanosyenite type that contains elevated Fe and smaller SiO2 concentrations. The liquation layering of magmatic melt was slow because the liquates are similar in density; leucosyenite melt, which is more abundant than melt of melanosyenite composition, displays greater dynamic viscosity; the initial sizes of embryos of melanosyenite composition are microscopic. Sulphide melt, similar in composition to pyrrhotite, was also involved in the formation of the massif. Zircon was crystallized at temperatures over 1300°С, as indicated by the homogenization temperatures of primary melt inclusions. The REE distribution spectra of the main parts (or zones,) of zircon crystals from the Velyka Vyska massif are identical to those of zircon from the Azov and Yastrubets syenite massifs with which high-grade Zr and REE (Azov and Yastrubets) ore deposits are associated. They are characteristic of magmatically generated zircon. Some of the grains analyzed contain rims that are contrasting against the matrix of a crystal, look dark-grey in the BSE image and display flattened REE distribution spectra. Such spectra are also typical of baddeleyite, which formed by the partial replacement of zircon crystals. The formation of a dark-grey rim in zircon and baddeleyite is attributed to the strong effect of high-pressure СО2-fluid on the rock. The formation patterns of the Velyka Vyska and Azov massifs exhibit some common features: (а) silicate melt liquation; (b) high ZrO2 concentrations in glasses from hardened primary melt inclusions; (c) the supply of high-pressure СО2-fluid flows into Velyka Vyska and Azov hard rocks. Similar conditions of formation suggest the occurrence of high-grade Zr and REE ores in the Velyka Vyska syenite massif.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
18
期刊最新文献
CURRENT STATE’S CONDITION OF LITHIUM ORE DEPOSITS IN UKRAINE A COMPARATIVE ANALYSIS OF DIAMONDS IN NON-KIMBERLITIC ROCKS OF THE WORLD AND NEOGENE SANDS OF UKRAINE GEOCHEMICAL CHARACTERISTICS OF THE SALTYCHIAN GRANITES (WESTERN AZOV AREA) ACCORDING TO THE ICP-MS RESEARCH RESULTS ECOLOGICAL AND GEOCHEMICAL FEATURES OF MANGANESE DISTRIBUTION IN GROUNDWATERS OF UKRAINE PUMPELLYITE FROM METABASALTS OF THE UKRAINIAN CARPATHIANS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1