基于三重丢失深度学习的脑电认证

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Network World Pub Date : 2022-01-01 DOI:10.14311/nnw.2022.32.016
Jun Cui, Lei Su, Ran Wei, Guangxu Li, Hongwei Hu, Xin Dang
{"title":"基于三重丢失深度学习的脑电认证","authors":"Jun Cui, Lei Su, Ran Wei, Guangxu Li, Hongwei Hu, Xin Dang","doi":"10.14311/nnw.2022.32.016","DOIUrl":null,"url":null,"abstract":"As a novel biometric characteristic, the electroencephalogram (EEG) is used for biometric authentication. To solve the challenge of efficiently growing the number of classifications in traditional classification networks and to increase the practicality of engineering, this paper proposes an authentication approach for EEG data based on an attention mechanism and a triplet loss function. The method begins by feeding EEG signals into a deep convolutional network, maps them to 512-dimensional Euclidean space using a long short-term memory network combined with an attention mechanism, and obtains feature vectors for EEG signals with identity information; it then adjusts the network parameters using a triplet loss function, such that the Euclidean distance between feature vectors of similar signals decreases while the distance between signals of a different type increases. Finally, the recognition method is evaluated using publicly available EEG data sets. The experimental results suggest that the method maintains the recognition rate while effectively expanding the classifications of the model, hence thus boosting the practicability of EEG authentication.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG authentication based on deep learning of triplet loss\",\"authors\":\"Jun Cui, Lei Su, Ran Wei, Guangxu Li, Hongwei Hu, Xin Dang\",\"doi\":\"10.14311/nnw.2022.32.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a novel biometric characteristic, the electroencephalogram (EEG) is used for biometric authentication. To solve the challenge of efficiently growing the number of classifications in traditional classification networks and to increase the practicality of engineering, this paper proposes an authentication approach for EEG data based on an attention mechanism and a triplet loss function. The method begins by feeding EEG signals into a deep convolutional network, maps them to 512-dimensional Euclidean space using a long short-term memory network combined with an attention mechanism, and obtains feature vectors for EEG signals with identity information; it then adjusts the network parameters using a triplet loss function, such that the Euclidean distance between feature vectors of similar signals decreases while the distance between signals of a different type increases. Finally, the recognition method is evaluated using publicly available EEG data sets. The experimental results suggest that the method maintains the recognition rate while effectively expanding the classifications of the model, hence thus boosting the practicability of EEG authentication.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2022.32.016\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2022.32.016","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

脑电图作为一种新的生物特征,被用于生物特征鉴别。为了解决传统分类网络中分类数量难以有效增长的难题,提高工程实用性,本文提出了一种基于注意机制和三重损失函数的脑电数据认证方法。该方法首先将脑电信号输入深度卷积网络,利用结合注意机制的长短期记忆网络映射到512维欧氏空间,得到具有身份信息的脑电信号特征向量;然后利用三重态损失函数调整网络参数,使得相似信号特征向量之间的欧氏距离减小,而不同类型信号之间的距离增大。最后,使用公开可用的EEG数据集对识别方法进行评估。实验结果表明,该方法在保持识别率的同时,有效地扩展了模型的分类范围,从而提高了脑电认证的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EEG authentication based on deep learning of triplet loss
As a novel biometric characteristic, the electroencephalogram (EEG) is used for biometric authentication. To solve the challenge of efficiently growing the number of classifications in traditional classification networks and to increase the practicality of engineering, this paper proposes an authentication approach for EEG data based on an attention mechanism and a triplet loss function. The method begins by feeding EEG signals into a deep convolutional network, maps them to 512-dimensional Euclidean space using a long short-term memory network combined with an attention mechanism, and obtains feature vectors for EEG signals with identity information; it then adjusts the network parameters using a triplet loss function, such that the Euclidean distance between feature vectors of similar signals decreases while the distance between signals of a different type increases. Finally, the recognition method is evaluated using publicly available EEG data sets. The experimental results suggest that the method maintains the recognition rate while effectively expanding the classifications of the model, hence thus boosting the practicability of EEG authentication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
期刊最新文献
Water quality image classification for aquaculture using deep transfer learning Enhanced QOS energy-efficient routing algorithm using deep belief neural network in hybrid falcon-improved ACO nature-inspired optimization in wireless sensor networks Vibration analyses of railway systems using proposed neural predictors A self-adaptive deep learning-based model to predict cloud workload Integration of railway infrastructure topological description elements from the microL2 to the macroN0,L0 level of detail
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1