{"title":"丝绸蛋白的冰重结晶抑制活性","authors":"Yu Zhao, Hao Lu, Daizong Qi, Antonella Motta, Janine Fröhlich-Nowoisky, Jing Chen*, Yuling Sun* and Mischa Bonn, ","doi":"10.1021/acs.jpclett.3c01995","DOIUrl":null,"url":null,"abstract":"<p >The cryopreservation of cells, tissue, and organs is essential in both fundamental research and practical applications, such as modern regenerative medicine and technological applications. However, the formation of ice crystals during ice recrystallization can have harmful or even fatal effects on biological systems. To address this challenge, we explore the ice recrystallization inhibition (IRI) activity of two natural silk proteins of <i>Bombyx mori</i>, fibroin and sericin. We found that silk fibroin (SF) had higher ice recrystallization inhibition activity than silk sericin (SS). Moreover, SF aqueous solutions perform better in inhibiting ice recrystallization than SF phosphate-buffered saline solutions. Sum-frequency generation spectroscopy shows that stronger electrostatic interactions are responsible for the higher IRI ability of SF. This work is significant for broadening the applications of silk proteins in biomedical fields.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 36","pages":"8145–8150"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ice Recrystallization Inhibition Activity of Silk Proteins\",\"authors\":\"Yu Zhao, Hao Lu, Daizong Qi, Antonella Motta, Janine Fröhlich-Nowoisky, Jing Chen*, Yuling Sun* and Mischa Bonn, \",\"doi\":\"10.1021/acs.jpclett.3c01995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The cryopreservation of cells, tissue, and organs is essential in both fundamental research and practical applications, such as modern regenerative medicine and technological applications. However, the formation of ice crystals during ice recrystallization can have harmful or even fatal effects on biological systems. To address this challenge, we explore the ice recrystallization inhibition (IRI) activity of two natural silk proteins of <i>Bombyx mori</i>, fibroin and sericin. We found that silk fibroin (SF) had higher ice recrystallization inhibition activity than silk sericin (SS). Moreover, SF aqueous solutions perform better in inhibiting ice recrystallization than SF phosphate-buffered saline solutions. Sum-frequency generation spectroscopy shows that stronger electrostatic interactions are responsible for the higher IRI ability of SF. This work is significant for broadening the applications of silk proteins in biomedical fields.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"14 36\",\"pages\":\"8145–8150\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01995\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01995","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ice Recrystallization Inhibition Activity of Silk Proteins
The cryopreservation of cells, tissue, and organs is essential in both fundamental research and practical applications, such as modern regenerative medicine and technological applications. However, the formation of ice crystals during ice recrystallization can have harmful or even fatal effects on biological systems. To address this challenge, we explore the ice recrystallization inhibition (IRI) activity of two natural silk proteins of Bombyx mori, fibroin and sericin. We found that silk fibroin (SF) had higher ice recrystallization inhibition activity than silk sericin (SS). Moreover, SF aqueous solutions perform better in inhibiting ice recrystallization than SF phosphate-buffered saline solutions. Sum-frequency generation spectroscopy shows that stronger electrostatic interactions are responsible for the higher IRI ability of SF. This work is significant for broadening the applications of silk proteins in biomedical fields.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.