{"title":"串联质量选择低温数字离子阱增强团簇形成","authors":"Gina C. Roesch, and , Etienne Garand*, ","doi":"10.1021/acs.jpca.3c04706","DOIUrl":null,"url":null,"abstract":"<p >We present the implementation of tandem mass-selective cryogenic ion traps, designed to enhance the range of ion processing capabilities that can be performed prior to spectroscopic interrogation. We show that both the formation of ion clusters and mass filtering steps can be combined in a single cryogenic linear quadrupole ion trap driven by RF square waves. Mass filtering and mass isolation can be achieved by manipulation of the RF frequency and duty cycle. Very importantly, this scheme circumvents the need for high-amplitude RF voltages that can be incompatible with typical cryogenic ion processing conditions. In addition, proper adjustment of the stability boundaries during the clustering process allows for the preferential formation of a specific cluster size rather than a broad distribution of sizes. Lastly, we show that a specific cluster size can be formed, mass-selected, and then transferred to another ion trap for a second completely separate ion processing step. The instrumentation and modular design developed here expand the scope of ionic species and clusters that can be accessed by processing electrosprayed ions.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 36","pages":"7665–7672"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tandem Mass-Selective Cryogenic Digital Ion Traps for Enhanced Cluster Formation\",\"authors\":\"Gina C. Roesch, and , Etienne Garand*, \",\"doi\":\"10.1021/acs.jpca.3c04706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We present the implementation of tandem mass-selective cryogenic ion traps, designed to enhance the range of ion processing capabilities that can be performed prior to spectroscopic interrogation. We show that both the formation of ion clusters and mass filtering steps can be combined in a single cryogenic linear quadrupole ion trap driven by RF square waves. Mass filtering and mass isolation can be achieved by manipulation of the RF frequency and duty cycle. Very importantly, this scheme circumvents the need for high-amplitude RF voltages that can be incompatible with typical cryogenic ion processing conditions. In addition, proper adjustment of the stability boundaries during the clustering process allows for the preferential formation of a specific cluster size rather than a broad distribution of sizes. Lastly, we show that a specific cluster size can be formed, mass-selected, and then transferred to another ion trap for a second completely separate ion processing step. The instrumentation and modular design developed here expand the scope of ionic species and clusters that can be accessed by processing electrosprayed ions.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\"127 36\",\"pages\":\"7665–7672\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.3c04706\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.3c04706","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tandem Mass-Selective Cryogenic Digital Ion Traps for Enhanced Cluster Formation
We present the implementation of tandem mass-selective cryogenic ion traps, designed to enhance the range of ion processing capabilities that can be performed prior to spectroscopic interrogation. We show that both the formation of ion clusters and mass filtering steps can be combined in a single cryogenic linear quadrupole ion trap driven by RF square waves. Mass filtering and mass isolation can be achieved by manipulation of the RF frequency and duty cycle. Very importantly, this scheme circumvents the need for high-amplitude RF voltages that can be incompatible with typical cryogenic ion processing conditions. In addition, proper adjustment of the stability boundaries during the clustering process allows for the preferential formation of a specific cluster size rather than a broad distribution of sizes. Lastly, we show that a specific cluster size can be formed, mass-selected, and then transferred to another ion trap for a second completely separate ion processing step. The instrumentation and modular design developed here expand the scope of ionic species and clusters that can be accessed by processing electrosprayed ions.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.