分形放射物理学。第2部分。信号和过程的分形和多重分形分析方法

Q4 Physics and Astronomy Radio Physics and Radio Astronomy Pub Date : 2023-01-01 DOI:10.15407/rpra28.01.005
O. Lazorenko, L. Chernogor
{"title":"分形放射物理学。第2部分。信号和过程的分形和多重分形分析方法","authors":"O. Lazorenko, L. Chernogor","doi":"10.15407/rpra28.01.005","DOIUrl":null,"url":null,"abstract":"Subject and Purpose. The subject of this paper is to review the principal methods of fractal and multifractal analysis of signals and processes, in combination with a detailed consideration of the algorithms that can provide for a successful practical implementation of the methods described. Methods and Methodology. The results presented concern modeling of both deterministic and stochastic fractal and multifractal signals and processes. The corresponding practical methods of analysis are considered, with discussion of their essential features, advantages and disadvantages, as well as of the problems of application that may exist. Results. Several approaches have been discussed as to categorizing the signals and processes within the notion of fractality. A few tens of models of deterministic and stochastic fractal or multifractal signals and processes have been analyzed in detail. Over twenty methods of monofractal analysis have been analyzed, with identifi cation of their features, advantages or disadvantages, and limits of applicability. The expediency of resorting to complex methods of monofractal analysis has also been discussed. Those methods are not based upon application of fractal analysis techniques alone but rather combine them with linear and nonlinear integral time-frequency transforms. The effectiveness of the ten most popular multifractal analysis techniques has been confirmed, with consideration of their special features, advantages and drawbacks. Conclusion. The mathematical foundations have been presented which underlie modern methods of analysis and modeling of fractal and multifractal signals and processes. The methods discussed may allow revealing a great amount of unique hidden information on the world around us.","PeriodicalId":33380,"journal":{"name":"Radio Physics and Radio Astronomy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FRACTAL RADIOPHYSICS. Part 2. FRACTAL AND MULTIFRACTAL ANALYSIS METHODS OF SIGNALS AND PROCESSES\",\"authors\":\"O. Lazorenko, L. Chernogor\",\"doi\":\"10.15407/rpra28.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subject and Purpose. The subject of this paper is to review the principal methods of fractal and multifractal analysis of signals and processes, in combination with a detailed consideration of the algorithms that can provide for a successful practical implementation of the methods described. Methods and Methodology. The results presented concern modeling of both deterministic and stochastic fractal and multifractal signals and processes. The corresponding practical methods of analysis are considered, with discussion of their essential features, advantages and disadvantages, as well as of the problems of application that may exist. Results. Several approaches have been discussed as to categorizing the signals and processes within the notion of fractality. A few tens of models of deterministic and stochastic fractal or multifractal signals and processes have been analyzed in detail. Over twenty methods of monofractal analysis have been analyzed, with identifi cation of their features, advantages or disadvantages, and limits of applicability. The expediency of resorting to complex methods of monofractal analysis has also been discussed. Those methods are not based upon application of fractal analysis techniques alone but rather combine them with linear and nonlinear integral time-frequency transforms. The effectiveness of the ten most popular multifractal analysis techniques has been confirmed, with consideration of their special features, advantages and drawbacks. Conclusion. The mathematical foundations have been presented which underlie modern methods of analysis and modeling of fractal and multifractal signals and processes. The methods discussed may allow revealing a great amount of unique hidden information on the world around us.\",\"PeriodicalId\":33380,\"journal\":{\"name\":\"Radio Physics and Radio Astronomy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Physics and Radio Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/rpra28.01.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Physics and Radio Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/rpra28.01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

主题和目的。本文的主题是回顾信号和过程的分形和多重分形分析的主要方法,结合对算法的详细考虑,可以提供成功的实际实施所描述的方法。方法和方法论。研究结果涉及确定性分形和随机分形以及多重分形信号和过程的建模。考虑了相应的实用分析方法,讨论了它们的基本特点、优缺点以及应用中可能存在的问题。结果。在分形的概念中,讨论了几种分类信号和过程的方法。对几十种确定性和随机分形或多重分形信号和过程的模型进行了详细的分析。对二十多种单分形分析方法进行了分析,指出了它们的特点、优缺点和适用范围。本文还讨论了采用复杂的单分形分析方法的便利性。这些方法不是单独应用分形分析技术,而是将分形分析技术与线性和非线性时频积分变换相结合。考虑到十种最流行的多重分形分析技术的特点、优缺点,对它们的有效性进行了验证。结论。提出了分形和多重分形信号和过程的现代分析和建模方法的数学基础。所讨论的方法可能会揭示我们周围世界中大量独特的隐藏信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FRACTAL RADIOPHYSICS. Part 2. FRACTAL AND MULTIFRACTAL ANALYSIS METHODS OF SIGNALS AND PROCESSES
Subject and Purpose. The subject of this paper is to review the principal methods of fractal and multifractal analysis of signals and processes, in combination with a detailed consideration of the algorithms that can provide for a successful practical implementation of the methods described. Methods and Methodology. The results presented concern modeling of both deterministic and stochastic fractal and multifractal signals and processes. The corresponding practical methods of analysis are considered, with discussion of their essential features, advantages and disadvantages, as well as of the problems of application that may exist. Results. Several approaches have been discussed as to categorizing the signals and processes within the notion of fractality. A few tens of models of deterministic and stochastic fractal or multifractal signals and processes have been analyzed in detail. Over twenty methods of monofractal analysis have been analyzed, with identifi cation of their features, advantages or disadvantages, and limits of applicability. The expediency of resorting to complex methods of monofractal analysis has also been discussed. Those methods are not based upon application of fractal analysis techniques alone but rather combine them with linear and nonlinear integral time-frequency transforms. The effectiveness of the ten most popular multifractal analysis techniques has been confirmed, with consideration of their special features, advantages and drawbacks. Conclusion. The mathematical foundations have been presented which underlie modern methods of analysis and modeling of fractal and multifractal signals and processes. The methods discussed may allow revealing a great amount of unique hidden information on the world around us.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radio Physics and Radio Astronomy
Radio Physics and Radio Astronomy Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
18
审稿时长
8 weeks
期刊最新文献
GROUND BASED SUPPORT OF THE SPACE MISSION PARKER PERFORMED WITH UKRAINIAN LOW FREQUENCY RADIO TELESCOPES FRACTAL RADIOPHYSICS. Part 2. FRACTAL AND MULTIFRACTAL ANALYSIS METHODS OF SIGNALS AND PROCESSES OMNIDIRECTIONAL MILLIMETER-WAVELENGTH ANTENNAS BASED ON SEGMENTAL DIELECTRIC RESONATORS WHICH SUPPORT WHISPERING GALLERY MODES V. P. SHESTOPALOV AND HIS SCIENTIFIC SCHOOL: FROM QUASISTATICS TO QUASIOPTICS (to mark V.P.'s birth centenary) PROGRESS IN THE STUDY OF DECAMETER-WAVELENGTH SOLAR RADIO EMISSION WITH UKRAINIAN RADIO TELESCOPES. Part 1. (Invited paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1