一种基于平面非封闭环形辐射体的宽带贴片天线

Q4 Physics and Astronomy Radio Physics and Radio Astronomy Pub Date : 2023-01-01 DOI:10.15407/rpra28.02.158
S. Pogarsky, D. Mayboroda
{"title":"一种基于平面非封闭环形辐射体的宽带贴片天线","authors":"S. Pogarsky, D. Mayboroda","doi":"10.15407/rpra28.02.158","DOIUrl":null,"url":null,"abstract":"Subject and Purpose. Results are presented of numerical simulation of a patch antenna in the form of a planar unclosed annular radiator placed above an earthed plane. The work has been aimed at optimizing the key parameters of the antenna, like the degree of its matching with external circuits, achievable through proper selection of the excitation method and variation of the substrate permittivity, antenna gain, and power and polarization characteristics. Methods and Methodology. The antenna has been designed as an unclosed annular strip line. The angular width of the gap in the ring was varied during the optimization process. The antenna is excited via a segment of a coplanar line. The numerical simulation was performed for the unclosed resonator model, with all the limitations imposed on the model in the framework of the finite element method. The performance characteristics of the antenna have been optimized with account of the return loss level, gain magnitude and ellipticity over the given frequency range. Results. Frequency and power characteristics of the patch antenna based on an unclosed annular strip-line radiator have been ana- lyzed and optimized over a broad frequency range. The impact of key parameters of the structure upon its performance characteristics has been established, specifically of the angular width of the gap in the unclosed ring, separation from the ground plane, and dielectric permittivity value in the substrate. The possibility has been demonstrated of generating radiation fields of an elliptical polarization which is rather close to circular. Conclusions. The frequency, spectral and power characteristics studied of a patch antenna built around a planar unclosed annu- lar strip-line radiator above an earthed plane. The numerical modeling was performed within the framework of the finite element method. The principal dependences of the antenna’s electrodynamic performance upon such parameters as geometry, characteristic dimensions and material constants have been condsidered. The results obtained allow suggesting application of such antennas in the capacity of both independent radiators and elements of phased antenna arrays.","PeriodicalId":33380,"journal":{"name":"Radio Physics and Radio Astronomy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A BROADBAND PATCH ANTENNA BASED ON A PLANAR UNCLOSED ANNULAR RADIATOR\",\"authors\":\"S. Pogarsky, D. Mayboroda\",\"doi\":\"10.15407/rpra28.02.158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subject and Purpose. Results are presented of numerical simulation of a patch antenna in the form of a planar unclosed annular radiator placed above an earthed plane. The work has been aimed at optimizing the key parameters of the antenna, like the degree of its matching with external circuits, achievable through proper selection of the excitation method and variation of the substrate permittivity, antenna gain, and power and polarization characteristics. Methods and Methodology. The antenna has been designed as an unclosed annular strip line. The angular width of the gap in the ring was varied during the optimization process. The antenna is excited via a segment of a coplanar line. The numerical simulation was performed for the unclosed resonator model, with all the limitations imposed on the model in the framework of the finite element method. The performance characteristics of the antenna have been optimized with account of the return loss level, gain magnitude and ellipticity over the given frequency range. Results. Frequency and power characteristics of the patch antenna based on an unclosed annular strip-line radiator have been ana- lyzed and optimized over a broad frequency range. The impact of key parameters of the structure upon its performance characteristics has been established, specifically of the angular width of the gap in the unclosed ring, separation from the ground plane, and dielectric permittivity value in the substrate. The possibility has been demonstrated of generating radiation fields of an elliptical polarization which is rather close to circular. Conclusions. The frequency, spectral and power characteristics studied of a patch antenna built around a planar unclosed annu- lar strip-line radiator above an earthed plane. The numerical modeling was performed within the framework of the finite element method. The principal dependences of the antenna’s electrodynamic performance upon such parameters as geometry, characteristic dimensions and material constants have been condsidered. The results obtained allow suggesting application of such antennas in the capacity of both independent radiators and elements of phased antenna arrays.\",\"PeriodicalId\":33380,\"journal\":{\"name\":\"Radio Physics and Radio Astronomy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Physics and Radio Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/rpra28.02.158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Physics and Radio Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/rpra28.02.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

主题和目的。本文给出了一种平面非封闭环形辐射体形式的贴片天线的数值模拟结果。通过选择合适的激励方式,改变衬底介电常数、天线增益、功率和极化特性,优化天线的关键参数,如与外部电路的匹配程度。方法和方法论。天线被设计成不闭合的环形带状线。在优化过程中,环隙的角宽度是不同的。天线通过共面线的一段来激励。对非闭合谐振腔模型进行了数值模拟,并在有限元框架下对该模型进行了限制。考虑到天线在给定频率范围内的回波损耗水平、增益幅度和椭圆度,对天线的性能特性进行了优化。结果。在较宽的频率范围内,分析和优化了基于非封闭环形带状线辐射体的贴片天线的频率和功率特性。确定了该结构的关键参数对其性能特性的影响,特别是开合环间隙的角宽度、与地平面的距离以及衬底中的介电常数值。证明了产生近似圆形的椭圆偏振辐射场的可能性。结论。研究了在接地平面上围绕平面不闭合环形带线辐射器的贴片天线的频率、频谱和功率特性。在有限元框架内进行了数值模拟。考虑了天线的电动力性能主要取决于几何形状、特征尺寸和材料常数等参数。所获得的结果表明,这种天线在独立辐射体和相控阵天线单元的容量中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A BROADBAND PATCH ANTENNA BASED ON A PLANAR UNCLOSED ANNULAR RADIATOR
Subject and Purpose. Results are presented of numerical simulation of a patch antenna in the form of a planar unclosed annular radiator placed above an earthed plane. The work has been aimed at optimizing the key parameters of the antenna, like the degree of its matching with external circuits, achievable through proper selection of the excitation method and variation of the substrate permittivity, antenna gain, and power and polarization characteristics. Methods and Methodology. The antenna has been designed as an unclosed annular strip line. The angular width of the gap in the ring was varied during the optimization process. The antenna is excited via a segment of a coplanar line. The numerical simulation was performed for the unclosed resonator model, with all the limitations imposed on the model in the framework of the finite element method. The performance characteristics of the antenna have been optimized with account of the return loss level, gain magnitude and ellipticity over the given frequency range. Results. Frequency and power characteristics of the patch antenna based on an unclosed annular strip-line radiator have been ana- lyzed and optimized over a broad frequency range. The impact of key parameters of the structure upon its performance characteristics has been established, specifically of the angular width of the gap in the unclosed ring, separation from the ground plane, and dielectric permittivity value in the substrate. The possibility has been demonstrated of generating radiation fields of an elliptical polarization which is rather close to circular. Conclusions. The frequency, spectral and power characteristics studied of a patch antenna built around a planar unclosed annu- lar strip-line radiator above an earthed plane. The numerical modeling was performed within the framework of the finite element method. The principal dependences of the antenna’s electrodynamic performance upon such parameters as geometry, characteristic dimensions and material constants have been condsidered. The results obtained allow suggesting application of such antennas in the capacity of both independent radiators and elements of phased antenna arrays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radio Physics and Radio Astronomy
Radio Physics and Radio Astronomy Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
18
审稿时长
8 weeks
期刊最新文献
GROUND BASED SUPPORT OF THE SPACE MISSION PARKER PERFORMED WITH UKRAINIAN LOW FREQUENCY RADIO TELESCOPES FRACTAL RADIOPHYSICS. Part 2. FRACTAL AND MULTIFRACTAL ANALYSIS METHODS OF SIGNALS AND PROCESSES OMNIDIRECTIONAL MILLIMETER-WAVELENGTH ANTENNAS BASED ON SEGMENTAL DIELECTRIC RESONATORS WHICH SUPPORT WHISPERING GALLERY MODES V. P. SHESTOPALOV AND HIS SCIENTIFIC SCHOOL: FROM QUASISTATICS TO QUASIOPTICS (to mark V.P.'s birth centenary) PROGRESS IN THE STUDY OF DECAMETER-WAVELENGTH SOLAR RADIO EMISSION WITH UKRAINIAN RADIO TELESCOPES. Part 1. (Invited paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1