评价超声预处理作为改进菠萝副产物发酵饮料工艺的工具

Q3 Agricultural and Biological Sciences Brazilian Journal of Food Technology Pub Date : 2022-01-01 DOI:10.1590/1981-6723.11621
Karla Aguilar
{"title":"评价超声预处理作为改进菠萝副产物发酵饮料工艺的工具","authors":"Karla Aguilar","doi":"10.1590/1981-6723.11621","DOIUrl":null,"url":null,"abstract":"Abstract Fermentation has the potential of converting fruit by-products into value-added products via an efficient, sustainable, and low-cost process. Traditionally, Mexicans use pineapple residues to produce a fermented beverage called tepache. As this soft drink is increasingly consumed in restaurants, it is necessary to develop an effective and reliable process to yield a final product with desirable physicochemical properties. In this work, tepache was prepared using an ultrasound pre-treatment to enhance the fermentation process and improve the end-product quality. The ultrasound was provided by a probe (25 kHz, 400 W) submerged in pineapple preparations before fermentation. Characterization of physicochemical properties was performed on samples processed under different types of amplitude (20 and 100%) and sonication time (5 and 10 min). In all samples, the pH, acidity, and ºBrix values were similar to those in commercial tepaches. On the other hand, microscopy revealed that 5 min of sonication induced positive changes in the suspended matter responsible for the physical stability of fruit beverages. The tepaches obtained with this method had color uniformity. Indeed, 5 min of sonication at the highest amplitude (16.34 kJ・cm-2) augmented the soluble solids during the initial phases of fermentation. Moreover, the results from IR spectroscopy proved that ultrasound helped the ethanol release from yeasts. The maximum ethanol yield, calculated by model fitting, had a positive variation of 35%. These findings prove that ultrasound is capable to induce physicochemical changes useful for the industrial production of tepache.","PeriodicalId":9112,"journal":{"name":"Brazilian Journal of Food Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluating ultrasound pre-treatment as a tool for improving the process of a fermented beverage made from pineapple by-products\",\"authors\":\"Karla Aguilar\",\"doi\":\"10.1590/1981-6723.11621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fermentation has the potential of converting fruit by-products into value-added products via an efficient, sustainable, and low-cost process. Traditionally, Mexicans use pineapple residues to produce a fermented beverage called tepache. As this soft drink is increasingly consumed in restaurants, it is necessary to develop an effective and reliable process to yield a final product with desirable physicochemical properties. In this work, tepache was prepared using an ultrasound pre-treatment to enhance the fermentation process and improve the end-product quality. The ultrasound was provided by a probe (25 kHz, 400 W) submerged in pineapple preparations before fermentation. Characterization of physicochemical properties was performed on samples processed under different types of amplitude (20 and 100%) and sonication time (5 and 10 min). In all samples, the pH, acidity, and ºBrix values were similar to those in commercial tepaches. On the other hand, microscopy revealed that 5 min of sonication induced positive changes in the suspended matter responsible for the physical stability of fruit beverages. The tepaches obtained with this method had color uniformity. Indeed, 5 min of sonication at the highest amplitude (16.34 kJ・cm-2) augmented the soluble solids during the initial phases of fermentation. Moreover, the results from IR spectroscopy proved that ultrasound helped the ethanol release from yeasts. The maximum ethanol yield, calculated by model fitting, had a positive variation of 35%. These findings prove that ultrasound is capable to induce physicochemical changes useful for the industrial production of tepache.\",\"PeriodicalId\":9112,\"journal\":{\"name\":\"Brazilian Journal of Food Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Food Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1981-6723.11621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Food Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1981-6723.11621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3

摘要

发酵具有通过高效、可持续和低成本的过程将水果副产品转化为增值产品的潜力。传统上,墨西哥人用菠萝渣制作一种叫做tepache的发酵饮料。随着这种软饮料越来越多地在餐馆消费,有必要开发一种有效和可靠的工艺,以产生具有理想物理化学性质的最终产品。在本研究中,采用超声预处理法制备tepache,以增强发酵过程,提高最终产品质量。在发酵前,用探针(25 kHz, 400 W)浸泡在菠萝制剂中。对不同振幅(20%和100%)和超声时间(5和10 min)下处理的样品进行了理化性质表征。在所有样品中,pH值、酸度和白锐度值与商业样品相似。另一方面,显微镜显示,5分钟的超声诱导悬浮物的积极变化,负责水果饮料的物理稳定性。该方法获得的膜片具有颜色均匀性。事实上,在发酵的初始阶段,以最高振幅(16.34 kJ·cm-2)进行5分钟的超声处理可以增加可溶性固形物。红外光谱分析结果表明,超声波有助于酵母中乙醇的释放。通过模型拟合计算得到的最大乙醇产率为35%。这些发现证明了超声波能够诱导对乙酰胆碱工业生产有用的物理化学变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating ultrasound pre-treatment as a tool for improving the process of a fermented beverage made from pineapple by-products
Abstract Fermentation has the potential of converting fruit by-products into value-added products via an efficient, sustainable, and low-cost process. Traditionally, Mexicans use pineapple residues to produce a fermented beverage called tepache. As this soft drink is increasingly consumed in restaurants, it is necessary to develop an effective and reliable process to yield a final product with desirable physicochemical properties. In this work, tepache was prepared using an ultrasound pre-treatment to enhance the fermentation process and improve the end-product quality. The ultrasound was provided by a probe (25 kHz, 400 W) submerged in pineapple preparations before fermentation. Characterization of physicochemical properties was performed on samples processed under different types of amplitude (20 and 100%) and sonication time (5 and 10 min). In all samples, the pH, acidity, and ºBrix values were similar to those in commercial tepaches. On the other hand, microscopy revealed that 5 min of sonication induced positive changes in the suspended matter responsible for the physical stability of fruit beverages. The tepaches obtained with this method had color uniformity. Indeed, 5 min of sonication at the highest amplitude (16.34 kJ・cm-2) augmented the soluble solids during the initial phases of fermentation. Moreover, the results from IR spectroscopy proved that ultrasound helped the ethanol release from yeasts. The maximum ethanol yield, calculated by model fitting, had a positive variation of 35%. These findings prove that ultrasound is capable to induce physicochemical changes useful for the industrial production of tepache.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brazilian Journal of Food Technology
Brazilian Journal of Food Technology Agricultural and Biological Sciences-Food Science
CiteScore
2.20
自引率
0.00%
发文量
32
审稿时长
35 weeks
期刊介绍: The Brazilian Journal of Food Technology (BJFT) is an electronic rolling pass publication with free access, whose purpose is to publish unpublished articles based on original research results and technological information that significantly contribute to the dissemination of new knowledge related to production and evaluation of food in the areas of science, technology, food engineering and nutrition (non-clinical). Manuscripts of national or international scope are accepted, presenting new concepts or experimental approaches that are not only repositories of scientific data. The Journal publishes original articles, review articles, scientific notes, case reports, and short communication in Portuguese and English. The submission of a manuscript presupposes that the same paper is not under analysis for publication in any other divulging vehicle. Articles specifically contemplating analytical methodologies will be accepted as long as they are innovative or provide significant improvement to existing methods. It is at the discretion of the Editors, depending on the subject relevance, the acceptance of works with test results of industrialized products without the information necessary to manufacture them. Papers aimed essentially at commercial propaganda will not be accepted.
期刊最新文献
Plant based proteins as an egg alternative in cookies: using de-oiled sunflower meal and its protein isolate as an emulsifying agent Nutritional evaluation and palatability of pet biscuits for dogs Physicochemical changes during controlled laboratory fermentation of cocoa (CCN-51) with the inclusion of fruits and on-farm inoculation Nutraceuticals based on Portuguese grape pomaces as a potential additive in food products Valorization of lychee fruit peels waste for the sustainable production of value-added ingredient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1