温控搅拌摩擦焊的热耗散效应

IF 0.3 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Soldagem & Inspecao Pub Date : 2019-01-01 DOI:10.1590/0104-9224/si24.28
A. Magalhães, J. Backer, G. Bolmsjö
{"title":"温控搅拌摩擦焊的热耗散效应","authors":"A. Magalhães, J. Backer, G. Bolmsjö","doi":"10.1590/0104-9224/si24.28","DOIUrl":null,"url":null,"abstract":"Abstract During Friction Stir Welding (FSW) of complex geometries, the thermal dissipation, induced by geometric features or the surrounding environment, may strongly affect the final weld quality. In order to guarantee a consistent weld quality for different conditions, in-process welding parameter adaptation is needed. This paper studies the effect of thermal dissipation, induced by the backing bar thermal conductivity, on the weld temperature and the temperature controller response to it. A new temperature sensor solution, the Tool-Workpiece Thermocouple (TWT) method, was applied to acquire online temperature measurements during welding. An FSW-robot equipped with temperature control, achieved by rotation speed adaptation, was used. AA7075-T6 lap joints were performed with and without temperature control. The cooling rate during welding was register plus macrographs and tensile tests were assessed. The controller demonstrated a fast response promoting the heat input necessary to maintain the set welding temperature. The results demonstrated that temperature control using the TWT method is suitable to achieve higher joint performance and provides a fast setup of optimal parameters for different environments.","PeriodicalId":49500,"journal":{"name":"Soldagem & Inspecao","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Thermal Dissipation Effect on Temperature-controlled Friction Stir Welding\",\"authors\":\"A. Magalhães, J. Backer, G. Bolmsjö\",\"doi\":\"10.1590/0104-9224/si24.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract During Friction Stir Welding (FSW) of complex geometries, the thermal dissipation, induced by geometric features or the surrounding environment, may strongly affect the final weld quality. In order to guarantee a consistent weld quality for different conditions, in-process welding parameter adaptation is needed. This paper studies the effect of thermal dissipation, induced by the backing bar thermal conductivity, on the weld temperature and the temperature controller response to it. A new temperature sensor solution, the Tool-Workpiece Thermocouple (TWT) method, was applied to acquire online temperature measurements during welding. An FSW-robot equipped with temperature control, achieved by rotation speed adaptation, was used. AA7075-T6 lap joints were performed with and without temperature control. The cooling rate during welding was register plus macrographs and tensile tests were assessed. The controller demonstrated a fast response promoting the heat input necessary to maintain the set welding temperature. The results demonstrated that temperature control using the TWT method is suitable to achieve higher joint performance and provides a fast setup of optimal parameters for different environments.\",\"PeriodicalId\":49500,\"journal\":{\"name\":\"Soldagem & Inspecao\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soldagem & Inspecao\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1590/0104-9224/si24.28\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldagem & Inspecao","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/0104-9224/si24.28","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 11

摘要

摘要在复杂几何形状的搅拌摩擦焊接过程中,由几何特征或周围环境引起的热耗散会严重影响最终焊接质量。为了保证不同条件下焊接质量的一致性,需要对焊接工艺参数进行自适应。本文研究了由衬条导热系数引起的热耗散对焊接温度的影响以及温度控制器对其的响应。提出了一种新的温度传感器解决方案——工具-工件热电偶(TWT)方法,用于焊接过程中的在线温度测量。采用转速自适应实现温度控制的fsw机器人。AA7075-T6搭接在有和没有温度控制的情况下进行。焊接过程中的冷却速率记录了宏观图,并进行了拉伸试验。控制器显示出快速响应,促进了维持设定焊接温度所需的热量输入。结果表明,采用行波管方法进行温度控制可以获得更高的联合性能,并且可以快速设置不同环境下的最优参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal Dissipation Effect on Temperature-controlled Friction Stir Welding
Abstract During Friction Stir Welding (FSW) of complex geometries, the thermal dissipation, induced by geometric features or the surrounding environment, may strongly affect the final weld quality. In order to guarantee a consistent weld quality for different conditions, in-process welding parameter adaptation is needed. This paper studies the effect of thermal dissipation, induced by the backing bar thermal conductivity, on the weld temperature and the temperature controller response to it. A new temperature sensor solution, the Tool-Workpiece Thermocouple (TWT) method, was applied to acquire online temperature measurements during welding. An FSW-robot equipped with temperature control, achieved by rotation speed adaptation, was used. AA7075-T6 lap joints were performed with and without temperature control. The cooling rate during welding was register plus macrographs and tensile tests were assessed. The controller demonstrated a fast response promoting the heat input necessary to maintain the set welding temperature. The results demonstrated that temperature control using the TWT method is suitable to achieve higher joint performance and provides a fast setup of optimal parameters for different environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soldagem & Inspecao
Soldagem & Inspecao 工程技术-冶金工程
CiteScore
1.00
自引率
16.70%
发文量
13
审稿时长
12 weeks
期刊介绍: The Journal Soldagem & Inspeção (S&I) js a techno-scientific journal created in 1995. Printed issues of this journal are distributed free of charge to libraries in Brazil, Latin America and the Iberian Peninsula. It has been printed regularly every quarter since September, 2002, and, since the beginning of 2007, its electronic version is available in the address: (http://www.abs-soldagem.org.br/s&i/). The journal is sponsored by the Brazilian Welding Association (ABS). Since its creation several well known professionals working in welding contributed with the Journal Soldagem & Inspeção and its editorial board crosses the Brazilian borders. During its evolution the Journal received ta special contribution from the Editors-in-chief : Ronaldo Paranhos, Américo Scoti, Paulo Modenesi e Alexandre Bracarence. Since January 2012 the Editor-in-chief is Ana Sofia C. M. D’Oliveira, Full professor at Universidade Federal do Paraná (UFPR) . Her work focus mainly on Hardfacing and Physical Metallurgy. The jornal Soldagem & Inspeção also counts with 10 Associate Editors and a fix Editorial board of referees. short-term (Ad Hoc) referees can be invited to evaluate some papers submitted to the journal. The Soldagem & Inspeção journal is the scientific divulgation channel of the Brazilian Welding Association (ABS). It aims to publish original papers related to the scientific and technological development of welding, inspection, and related fields. Review papers or letters on current and controversial subjects are also published in the Journal. Its abbreviated title is Soldag. insp. (Impr.), which should be used in bibliographies, footnotes and bibliographical references and strips.
期刊最新文献
Conjuntos Soldados Submetidos a Carregamento Excêntrico Quase Estático e de Impacto Estrutural “Fora do Plano” Evaluation of the Effect of Heat Input and Cooling Rate of Rail Flash-Butt Welding using Finite Element Method Simulation Influencia de la Atmosfera de N2 en los Parámetros Operacionales y la Microestructura del Depósito en el Recargue Duro con FCAW Simulações Computacionais dos Processos de Manufatura Aditiva de Metais: Um Review Introdutório Evolução dos Processos de Automação em Células de Soldagem: Uma Revisão da Literatura
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1