普里米酮包封对大鼠氧化代谢的影响

V. Ferranti, C. Chabenat, H. Marchais, S. Ménager, H. Hue, A. Orecchioni, O. Lafont
{"title":"普里米酮包封对大鼠氧化代谢的影响","authors":"V. Ferranti, C. Chabenat, H. Marchais, S. Ménager, H. Hue, A. Orecchioni, O. Lafont","doi":"10.1515/DMDI.2001.18.3-4.191","DOIUrl":null,"url":null,"abstract":"The aim of this study was to evaluate the influence of primidone (PRM) nanoencapsulation on its metabolism. Suspensions of PRM powder and PRM-loaded poly-epsilon-caprolactone nanocapsules were administered orally in the same way to rats. Primidone-loaded poly-epsilon-caprolactone nanocapsules were prepared according to the interfacial deposition technique. Free PRM suspensions were obtained by addition of PRM powder to a suspension of 0.212% carboxymethylcellulose CMC 12H in water. The dose was 20 mg/kg, n = 6, for each experiment. Urinary and faecal levels of PRM and of its three major metabolites, phenylethylmalonamide (PEMA), phenobarbital (PB), and p-hydroxyphenobarbital (p-HO-PB), were determined. Concentrations were evaluated by high-performance liquid chromatography (HPLC) according to a validated analytical method. After PRM nanocapsule administration, non-metabolised PRM urinary levels were increased compared to those observed after administration of a suspension of primidone powder (43.7+/-8.8% after PRM-loaded nanocapsule and 37.7+/-8.1% after free PRM administration). For phenylethylmalonamide, no difference was observed in urinary excretion in the two cases. For two of the oxidised metabolites, PB and p-HO-PB, excretion was delayed and shortened. The amount of these oxidised metabolites was lowered from 0.95% after free PRM administration to 0.25% after PRM-loaded nanocapsule administration. No difference was noted in non-metabolised primidone excretion in faeces. These results suggest that primidone-loaded nanocapsules could be used as a vehicle for oral primidone administration in order to minimise the phenobarbital metabolic pathway.","PeriodicalId":77889,"journal":{"name":"Reviews on drug metabolism and drug interactions","volume":"18 1","pages":"191 - 208"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/DMDI.2001.18.3-4.191","citationCount":"3","resultStr":"{\"title\":\"Effects of Encapsulation of Primidone on its Oxidative Metabolism in Rats\",\"authors\":\"V. Ferranti, C. Chabenat, H. Marchais, S. Ménager, H. Hue, A. Orecchioni, O. Lafont\",\"doi\":\"10.1515/DMDI.2001.18.3-4.191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study was to evaluate the influence of primidone (PRM) nanoencapsulation on its metabolism. Suspensions of PRM powder and PRM-loaded poly-epsilon-caprolactone nanocapsules were administered orally in the same way to rats. Primidone-loaded poly-epsilon-caprolactone nanocapsules were prepared according to the interfacial deposition technique. Free PRM suspensions were obtained by addition of PRM powder to a suspension of 0.212% carboxymethylcellulose CMC 12H in water. The dose was 20 mg/kg, n = 6, for each experiment. Urinary and faecal levels of PRM and of its three major metabolites, phenylethylmalonamide (PEMA), phenobarbital (PB), and p-hydroxyphenobarbital (p-HO-PB), were determined. Concentrations were evaluated by high-performance liquid chromatography (HPLC) according to a validated analytical method. After PRM nanocapsule administration, non-metabolised PRM urinary levels were increased compared to those observed after administration of a suspension of primidone powder (43.7+/-8.8% after PRM-loaded nanocapsule and 37.7+/-8.1% after free PRM administration). For phenylethylmalonamide, no difference was observed in urinary excretion in the two cases. For two of the oxidised metabolites, PB and p-HO-PB, excretion was delayed and shortened. The amount of these oxidised metabolites was lowered from 0.95% after free PRM administration to 0.25% after PRM-loaded nanocapsule administration. No difference was noted in non-metabolised primidone excretion in faeces. These results suggest that primidone-loaded nanocapsules could be used as a vehicle for oral primidone administration in order to minimise the phenobarbital metabolic pathway.\",\"PeriodicalId\":77889,\"journal\":{\"name\":\"Reviews on drug metabolism and drug interactions\",\"volume\":\"18 1\",\"pages\":\"191 - 208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/DMDI.2001.18.3-4.191\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews on drug metabolism and drug interactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/DMDI.2001.18.3-4.191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on drug metabolism and drug interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/DMDI.2001.18.3-4.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是评价primidone (PRM)纳米胶囊化对其代谢的影响。大鼠以相同方式口服PRM粉混悬液和负载PRM的聚ε -己内酯纳米胶囊。采用界面沉积技术制备了负载普米酮的聚ε -己内酯纳米胶囊。将PRM粉末加入到0.212%羧甲基纤维素CMC 12H的悬浮液中,得到游离的PRM悬浮液。每次试验剂量为20 mg/kg, n = 6。测定尿液和粪便中PRM及其三种主要代谢物苯乙基丙二胺(PEMA)、苯巴比妥(PB)和对羟基苯巴比妥(p-HO-PB)的水平。采用高效液相色谱法(HPLC)测定其浓度。服用PRM纳米胶囊后,与服用primidone粉末悬浮液后相比,尿中非代谢PRM水平升高(加载PRM纳米胶囊后为43.7+/-8.8%,自由服用PRM后为37.7+/-8.1%)。对于苯乙基丙二胺,两例患者尿排泄量无差异。对于两种氧化代谢物PB和p-HO-PB,排泄延迟和缩短。这些氧化代谢物的含量从游离给药后的0.95%降低到载药纳米胶囊后的0.25%。粪便中非代谢的primidone排泄量无差异。这些结果表明,载普利米酮纳米胶囊可以作为口服普利米酮的载体,以尽量减少苯巴比妥代谢途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Encapsulation of Primidone on its Oxidative Metabolism in Rats
The aim of this study was to evaluate the influence of primidone (PRM) nanoencapsulation on its metabolism. Suspensions of PRM powder and PRM-loaded poly-epsilon-caprolactone nanocapsules were administered orally in the same way to rats. Primidone-loaded poly-epsilon-caprolactone nanocapsules were prepared according to the interfacial deposition technique. Free PRM suspensions were obtained by addition of PRM powder to a suspension of 0.212% carboxymethylcellulose CMC 12H in water. The dose was 20 mg/kg, n = 6, for each experiment. Urinary and faecal levels of PRM and of its three major metabolites, phenylethylmalonamide (PEMA), phenobarbital (PB), and p-hydroxyphenobarbital (p-HO-PB), were determined. Concentrations were evaluated by high-performance liquid chromatography (HPLC) according to a validated analytical method. After PRM nanocapsule administration, non-metabolised PRM urinary levels were increased compared to those observed after administration of a suspension of primidone powder (43.7+/-8.8% after PRM-loaded nanocapsule and 37.7+/-8.1% after free PRM administration). For phenylethylmalonamide, no difference was observed in urinary excretion in the two cases. For two of the oxidised metabolites, PB and p-HO-PB, excretion was delayed and shortened. The amount of these oxidised metabolites was lowered from 0.95% after free PRM administration to 0.25% after PRM-loaded nanocapsule administration. No difference was noted in non-metabolised primidone excretion in faeces. These results suggest that primidone-loaded nanocapsules could be used as a vehicle for oral primidone administration in order to minimise the phenobarbital metabolic pathway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Micronutrients: Metabolic Tuning - Prevention - Therapy Determination of the Antimicrobial Properties of Oligo-2-hydroxy-l-naphthaldehyde Time-Dependent Pharmacokinetic Interaction Between Zidovudine and Rifampicin Following Oral Administration of the Combination at 1000 and 2200 Hours The Effect of Drugs and Toxins on the Process of Apoptosis Roles of Cytochrome P450 in Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1