过滤过程中形成的填料床结构的性质:一个二维和三维模型

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Organic Process Research & Development Pub Date : 2023-08-29 DOI:10.1021/acs.oprd.3c00147
William Eales*, Chris J. Price, William Hicks and Paul A. Mulheran, 
{"title":"过滤过程中形成的填料床结构的性质:一个二维和三维模型","authors":"William Eales*,&nbsp;Chris J. Price,&nbsp;William Hicks and Paul A. Mulheran,&nbsp;","doi":"10.1021/acs.oprd.3c00147","DOIUrl":null,"url":null,"abstract":"<p >Agglomeration is an issue that causes many problems during secondary processing for pharmaceutical companies, causing material to need further processing and costing additional time and resources to ensure a satisfactory outcome. A potential source of agglomeration arises from the particle contacts established during filtration that lead to robust agglomerates forming during drying, so that a necessary first step toward understanding agglomeration is to study the packing properties of filtration beds. Here, we present two and three-dimensional models simulating the formation of packed bed structures during filtration. The models use circular and spherical particles of different sizes, mimicking the bimodal particle size distributions sometimes encountered in industrial practice. The statistics of packing and void formation, along with the distribution of interparticle contacts and percolation structures, are presented and discussed in the context of filtration, drying, and agglomeration. The model paves the way for predictive capabilities that can lead to the rational design of processes to minimize the impact of agglomeration.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"27 9","pages":"1631–1640"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.oprd.3c00147","citationCount":"0","resultStr":"{\"title\":\"Properties of Packed Bed Structures Formed during Filtration: A Two and Three-Dimensional Model\",\"authors\":\"William Eales*,&nbsp;Chris J. Price,&nbsp;William Hicks and Paul A. Mulheran,&nbsp;\",\"doi\":\"10.1021/acs.oprd.3c00147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Agglomeration is an issue that causes many problems during secondary processing for pharmaceutical companies, causing material to need further processing and costing additional time and resources to ensure a satisfactory outcome. A potential source of agglomeration arises from the particle contacts established during filtration that lead to robust agglomerates forming during drying, so that a necessary first step toward understanding agglomeration is to study the packing properties of filtration beds. Here, we present two and three-dimensional models simulating the formation of packed bed structures during filtration. The models use circular and spherical particles of different sizes, mimicking the bimodal particle size distributions sometimes encountered in industrial practice. The statistics of packing and void formation, along with the distribution of interparticle contacts and percolation structures, are presented and discussed in the context of filtration, drying, and agglomeration. The model paves the way for predictive capabilities that can lead to the rational design of processes to minimize the impact of agglomeration.</p>\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":\"27 9\",\"pages\":\"1631–1640\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.oprd.3c00147\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.oprd.3c00147\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.3c00147","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在制药公司的二次加工过程中,结块是一个引起许多问题的问题,导致材料需要进一步加工,并花费额外的时间和资源来确保满意的结果。一个潜在的团聚源来自于过滤过程中建立的颗粒接触,导致干燥过程中形成坚固的团聚体,因此了解团聚的必要的第一步是研究过滤床的堆积特性。在这里,我们提出了模拟过滤过程中充填床结构形成的二维和三维模型。这些模型使用不同大小的圆形和球形颗粒,模拟工业实践中有时遇到的双峰粒度分布。在过滤、干燥和团聚的背景下,提出并讨论了堆积和空隙形成的统计数据,以及颗粒间接触和渗透结构的分布。该模型为预测能力铺平了道路,可以导致流程的合理设计,以尽量减少集聚的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Properties of Packed Bed Structures Formed during Filtration: A Two and Three-Dimensional Model

Agglomeration is an issue that causes many problems during secondary processing for pharmaceutical companies, causing material to need further processing and costing additional time and resources to ensure a satisfactory outcome. A potential source of agglomeration arises from the particle contacts established during filtration that lead to robust agglomerates forming during drying, so that a necessary first step toward understanding agglomeration is to study the packing properties of filtration beds. Here, we present two and three-dimensional models simulating the formation of packed bed structures during filtration. The models use circular and spherical particles of different sizes, mimicking the bimodal particle size distributions sometimes encountered in industrial practice. The statistics of packing and void formation, along with the distribution of interparticle contacts and percolation structures, are presented and discussed in the context of filtration, drying, and agglomeration. The model paves the way for predictive capabilities that can lead to the rational design of processes to minimize the impact of agglomeration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
期刊最新文献
Development of a Scalable Method for the Synthesis of Ethoxy(pentafluoro)cyclotriphosphazene Issue Publication Information Issue Editorial Masthead Practical, Large-Scale Preparation of Ni(tmeda)(o-tol)Cl Practical and Efficient Approach to Scalable Synthesis of Rucaparib
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1