基于plc的多泵压力控制应用

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Electrical Control and Communication Engineering Pub Date : 2015-12-01 DOI:10.1515/ecce-2015-0008
V. Vodovozov, Z. Raud, L. Gevorkov
{"title":"基于plc的多泵压力控制应用","authors":"V. Vodovozov, Z. Raud, L. Gevorkov","doi":"10.1515/ecce-2015-0008","DOIUrl":null,"url":null,"abstract":"Abstract The paper is devoted to the centrifugal pumps represented the most popular type of pumping equipment used in different areas. The pressure control approach for variable speed driven (VSD) parallel connected centrifugal pumps is reported. The goal of the study is optimization of some quality indices, such as efficiency, consumed power, productivity, energy carrier temperature, heat irradiation, etc. One of them – efficiency – has been studied in the paper more carefully. The mathematical model of pumping process is discussed and a vector-matrix description of the multi-pump application is given. The program-based pressure control system is developed which productivity is changed by regulating the number of working pumps. The paper introduces new pressure control algorithms based on the working point estimation intended for programmable logical controllers (PLC). Experiments prove correctness of the offered methodology.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"9 1","pages":"23 - 29"},"PeriodicalIF":0.5000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ecce-2015-0008","citationCount":"9","resultStr":"{\"title\":\"PLC-Based Pressure Control in Multi-Pump Applications\",\"authors\":\"V. Vodovozov, Z. Raud, L. Gevorkov\",\"doi\":\"10.1515/ecce-2015-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper is devoted to the centrifugal pumps represented the most popular type of pumping equipment used in different areas. The pressure control approach for variable speed driven (VSD) parallel connected centrifugal pumps is reported. The goal of the study is optimization of some quality indices, such as efficiency, consumed power, productivity, energy carrier temperature, heat irradiation, etc. One of them – efficiency – has been studied in the paper more carefully. The mathematical model of pumping process is discussed and a vector-matrix description of the multi-pump application is given. The program-based pressure control system is developed which productivity is changed by regulating the number of working pumps. The paper introduces new pressure control algorithms based on the working point estimation intended for programmable logical controllers (PLC). Experiments prove correctness of the offered methodology.\",\"PeriodicalId\":42365,\"journal\":{\"name\":\"Electrical Control and Communication Engineering\",\"volume\":\"9 1\",\"pages\":\"23 - 29\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ecce-2015-0008\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Control and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ecce-2015-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ecce-2015-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 9

摘要

摘要本文主要介绍了离心泵这一在不同领域应用最为广泛的泵送设备。报道了变速驱动并联离心泵的压力控制方法。研究的目标是优化一些质量指标,如效率、消耗功率、生产率、能量载体温度、热辐射等。本文对其中的效率问题进行了较为细致的研究。讨论了泵送过程的数学模型,给出了多泵应用的向量矩阵描述。开发了基于程序的压力控制系统,通过调节工作泵的数量来改变生产效率。介绍了一种新的基于工作点估计的可编程控制器压力控制算法。实验证明了该方法的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PLC-Based Pressure Control in Multi-Pump Applications
Abstract The paper is devoted to the centrifugal pumps represented the most popular type of pumping equipment used in different areas. The pressure control approach for variable speed driven (VSD) parallel connected centrifugal pumps is reported. The goal of the study is optimization of some quality indices, such as efficiency, consumed power, productivity, energy carrier temperature, heat irradiation, etc. One of them – efficiency – has been studied in the paper more carefully. The mathematical model of pumping process is discussed and a vector-matrix description of the multi-pump application is given. The program-based pressure control system is developed which productivity is changed by regulating the number of working pumps. The paper introduces new pressure control algorithms based on the working point estimation intended for programmable logical controllers (PLC). Experiments prove correctness of the offered methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrical Control and Communication Engineering
Electrical Control and Communication Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Technical Condition Monitoring for Telecommunication and Radioelectronic Systems with Redundancy A State of the Art in Simultaneous Localization and Mapping (SLAM) for Unmanned Ariel Vehicle (UAV): A Review Three-Point Iterated Interval Half-Cutting for Finding All Local Minima of Unknown Single-Variable Function Automatic Vessel Steering in a Storm GPR Application for Non-Rigid Road Pavement Condition Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1