{"title":"带强迫图的最小背包问题的2逼近算法","authors":"Yotaro Takazawa, S. Mizuno","doi":"10.15807/JORSJ.60.15","DOIUrl":null,"url":null,"abstract":"Carnes and Shmoys [2] presented a 2-approximation algorithm for the minimum knapsack problem. We extend their algorithm to the minimum knapsack problem with a forcing graph (MKPFG), which has a forcing constraint for each edge in the graph. The forcing constraint means that at least one item (vertex) of the edge must be packed in the knapsack. The problem is strongly NP-hard, since it includes the vertex cover problem as a special case. Generalizing the proposed algorithm, we also present an approximation algorithm for the covering integer program with 0-1 variables.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":"60 1","pages":"15-23"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15807/JORSJ.60.15","citationCount":"5","resultStr":"{\"title\":\"A 2-APPROXIMATION ALGORITHM FOR THE MINIMUM KNAPSACK PROBLEM WITH A FORCING GRAPH\",\"authors\":\"Yotaro Takazawa, S. Mizuno\",\"doi\":\"10.15807/JORSJ.60.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carnes and Shmoys [2] presented a 2-approximation algorithm for the minimum knapsack problem. We extend their algorithm to the minimum knapsack problem with a forcing graph (MKPFG), which has a forcing constraint for each edge in the graph. The forcing constraint means that at least one item (vertex) of the edge must be packed in the knapsack. The problem is strongly NP-hard, since it includes the vertex cover problem as a special case. Generalizing the proposed algorithm, we also present an approximation algorithm for the covering integer program with 0-1 variables.\",\"PeriodicalId\":51107,\"journal\":{\"name\":\"Journal of the Operations Research Society of Japan\",\"volume\":\"60 1\",\"pages\":\"15-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15807/JORSJ.60.15\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Operations Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15807/JORSJ.60.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/JORSJ.60.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
A 2-APPROXIMATION ALGORITHM FOR THE MINIMUM KNAPSACK PROBLEM WITH A FORCING GRAPH
Carnes and Shmoys [2] presented a 2-approximation algorithm for the minimum knapsack problem. We extend their algorithm to the minimum knapsack problem with a forcing graph (MKPFG), which has a forcing constraint for each edge in the graph. The forcing constraint means that at least one item (vertex) of the edge must be packed in the knapsack. The problem is strongly NP-hard, since it includes the vertex cover problem as a special case. Generalizing the proposed algorithm, we also present an approximation algorithm for the covering integer program with 0-1 variables.
期刊介绍:
The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.