种子批次排序的拟合数据挖掘设置

Ruan Bernardy, G. I. Gadotti, R. D. C. M. Monteiro, Karine Von Ahn Pinto, R. D. Pinheiro
{"title":"种子批次排序的拟合数据挖掘设置","authors":"Ruan Bernardy, G. I. Gadotti, R. D. C. M. Monteiro, Karine Von Ahn Pinto, R. D. Pinheiro","doi":"10.1590/1809-4430-eng.agric.v43n2e20220193/2023","DOIUrl":null,"url":null,"abstract":"To enhance speed and agility in interpreting physiological quality tests of seeds, The use of algorithms has emerged. This study aimed to identify suitable machine learning models to assist in the precise management of seed lot quality. Soybean lots from two companies were assessed using the Supplied Test Set, Cross-Validation (with 8, 10, and 12 folds), and Percentage Split (with 66% and 70%) methods. Variables analyzed through Tetrazolium tests included vigor, viability, mechanical damage, moisture damage, bed bug damage, and water content. Method performance was determined by Kappa, Precision, and ROC Area metrics. Classification Via Regression and J48 algorithms were employed. The technique utilizing 66% of data for training achieved 93.55% accuracy, with Precision and ROC Area reaching","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FITTING Data Mining Settings for Ranking Seed Lots\",\"authors\":\"Ruan Bernardy, G. I. Gadotti, R. D. C. M. Monteiro, Karine Von Ahn Pinto, R. D. Pinheiro\",\"doi\":\"10.1590/1809-4430-eng.agric.v43n2e20220193/2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance speed and agility in interpreting physiological quality tests of seeds, The use of algorithms has emerged. This study aimed to identify suitable machine learning models to assist in the precise management of seed lot quality. Soybean lots from two companies were assessed using the Supplied Test Set, Cross-Validation (with 8, 10, and 12 folds), and Percentage Split (with 66% and 70%) methods. Variables analyzed through Tetrazolium tests included vigor, viability, mechanical damage, moisture damage, bed bug damage, and water content. Method performance was determined by Kappa, Precision, and ROC Area metrics. Classification Via Regression and J48 algorithms were employed. The technique utilizing 66% of data for training achieved 93.55% accuracy, with Precision and ROC Area reaching\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20220193/2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20220193/2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
FITTING Data Mining Settings for Ranking Seed Lots
To enhance speed and agility in interpreting physiological quality tests of seeds, The use of algorithms has emerged. This study aimed to identify suitable machine learning models to assist in the precise management of seed lot quality. Soybean lots from two companies were assessed using the Supplied Test Set, Cross-Validation (with 8, 10, and 12 folds), and Percentage Split (with 66% and 70%) methods. Variables analyzed through Tetrazolium tests included vigor, viability, mechanical damage, moisture damage, bed bug damage, and water content. Method performance was determined by Kappa, Precision, and ROC Area metrics. Classification Via Regression and J48 algorithms were employed. The technique utilizing 66% of data for training achieved 93.55% accuracy, with Precision and ROC Area reaching
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1