加热速率和加工时间对传统和微波辅助烧结纳米赤铁矿粉晶粒生长的影响

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research-ibero-american Journal of Materials Pub Date : 2023-01-01 DOI:10.1590/1980-5373-mr-2023-0058
Marina Magro Togashi, C. Perdomo, R. Kiminami
{"title":"加热速率和加工时间对传统和微波辅助烧结纳米赤铁矿粉晶粒生长的影响","authors":"Marina Magro Togashi, C. Perdomo, R. Kiminami","doi":"10.1590/1980-5373-mr-2023-0058","DOIUrl":null,"url":null,"abstract":"Microwave-assisted sintering of ceramic materials has proven to be a very favorable processing technique that can promote lower grain growth and densification with shorter dwell times. Hematite is considered a good microwave absorber due to its high loss tangent value, calculated in the range of 0.001 to 0.2 between room temperature and 750 ºC for 2.45 GHz 1 , thus showing good interaction with this electromagnetic radiation. However, there are few studies on grain growth kinetics of hematite during microwave sintering, as well as the relationship with grain growth parameters. Therefore, the aim of this work was to evaluate the effect of the heating rate and dwell time on grain growth kinetics, during microwave-assisted sintering (2.45 GHz) of hematite nanopowders. In an initial characterization, dilatometry tests were performed by conventional heating and microwave-assisted heating using the same heating rate (20 °C/min). From these results, the temperature ranges of the initial and intermediate stages of sintering and the onset of linear shrinkage were determined. Considering these results, the samples were sintered in a conventional oven from 750 ºC to 1200 ºC with increments of 50 ºC, varying the dwell time in 6, 12 and 36 minutes. Thus, the diffusional mechanism (N) could be calculated, a value used for the approximate calculation of microwave sintering kinetics. Additionally, sintering was performed in a microwave oven using three heating rates (20, 30 and 50 °C/min) to evaluate the effect of the heating rate on grain growth. The estimated activation energies for the grain growth process during microwave sintering were approximately 237.5 to 272.3kJ/mol, which were higher compared to conventional sintering, in the range of 206.0 to 242.0 kJ /mol. It was found that with increasing microwave heating rate, the activation energy for grain growth tends to be higher.","PeriodicalId":18331,"journal":{"name":"Materials Research-ibero-american Journal of Materials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Heating Rate and Processing Time on Grain Growth of Hematite Nanopowders in Conventional and Microwave-Assisted Sintering\",\"authors\":\"Marina Magro Togashi, C. Perdomo, R. Kiminami\",\"doi\":\"10.1590/1980-5373-mr-2023-0058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave-assisted sintering of ceramic materials has proven to be a very favorable processing technique that can promote lower grain growth and densification with shorter dwell times. Hematite is considered a good microwave absorber due to its high loss tangent value, calculated in the range of 0.001 to 0.2 between room temperature and 750 ºC for 2.45 GHz 1 , thus showing good interaction with this electromagnetic radiation. However, there are few studies on grain growth kinetics of hematite during microwave sintering, as well as the relationship with grain growth parameters. Therefore, the aim of this work was to evaluate the effect of the heating rate and dwell time on grain growth kinetics, during microwave-assisted sintering (2.45 GHz) of hematite nanopowders. In an initial characterization, dilatometry tests were performed by conventional heating and microwave-assisted heating using the same heating rate (20 °C/min). From these results, the temperature ranges of the initial and intermediate stages of sintering and the onset of linear shrinkage were determined. Considering these results, the samples were sintered in a conventional oven from 750 ºC to 1200 ºC with increments of 50 ºC, varying the dwell time in 6, 12 and 36 minutes. Thus, the diffusional mechanism (N) could be calculated, a value used for the approximate calculation of microwave sintering kinetics. Additionally, sintering was performed in a microwave oven using three heating rates (20, 30 and 50 °C/min) to evaluate the effect of the heating rate on grain growth. The estimated activation energies for the grain growth process during microwave sintering were approximately 237.5 to 272.3kJ/mol, which were higher compared to conventional sintering, in the range of 206.0 to 242.0 kJ /mol. It was found that with increasing microwave heating rate, the activation energy for grain growth tends to be higher.\",\"PeriodicalId\":18331,\"journal\":{\"name\":\"Materials Research-ibero-american Journal of Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research-ibero-american Journal of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1590/1980-5373-mr-2023-0058\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research-ibero-american Journal of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/1980-5373-mr-2023-0058","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of the Heating Rate and Processing Time on Grain Growth of Hematite Nanopowders in Conventional and Microwave-Assisted Sintering
Microwave-assisted sintering of ceramic materials has proven to be a very favorable processing technique that can promote lower grain growth and densification with shorter dwell times. Hematite is considered a good microwave absorber due to its high loss tangent value, calculated in the range of 0.001 to 0.2 between room temperature and 750 ºC for 2.45 GHz 1 , thus showing good interaction with this electromagnetic radiation. However, there are few studies on grain growth kinetics of hematite during microwave sintering, as well as the relationship with grain growth parameters. Therefore, the aim of this work was to evaluate the effect of the heating rate and dwell time on grain growth kinetics, during microwave-assisted sintering (2.45 GHz) of hematite nanopowders. In an initial characterization, dilatometry tests were performed by conventional heating and microwave-assisted heating using the same heating rate (20 °C/min). From these results, the temperature ranges of the initial and intermediate stages of sintering and the onset of linear shrinkage were determined. Considering these results, the samples were sintered in a conventional oven from 750 ºC to 1200 ºC with increments of 50 ºC, varying the dwell time in 6, 12 and 36 minutes. Thus, the diffusional mechanism (N) could be calculated, a value used for the approximate calculation of microwave sintering kinetics. Additionally, sintering was performed in a microwave oven using three heating rates (20, 30 and 50 °C/min) to evaluate the effect of the heating rate on grain growth. The estimated activation energies for the grain growth process during microwave sintering were approximately 237.5 to 272.3kJ/mol, which were higher compared to conventional sintering, in the range of 206.0 to 242.0 kJ /mol. It was found that with increasing microwave heating rate, the activation energy for grain growth tends to be higher.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research-ibero-american Journal of Materials
Materials Research-ibero-american Journal of Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.40
自引率
11.80%
发文量
161
审稿时长
3 months
期刊介绍: Information not localized
期刊最新文献
Influence of Substrate Temperature on Microstructure of Zirconium Silicon Nitride Thin Films Deposited by Reactive Magnetron Sputtering Evaluation of Microstructural, Mechanical and Corrosion Behaviours of Laminated AA6061/AA7075 Metal Matrix Composites Build by Friction Stir Additive Manufacturing for Structural Applications Effect of Alkali Treatment of Alstonia macrophylla (AS) fiber on Dynamic Mechanical and Machinability Properties of Polypropylene (PP) Composites reinforced with Unidirectional AS fiber Experimental Characterization of Hydrogen Trapping on API 5CT P110 Steel. Part. I: Effect on Hydrogen Embrittlement Susceptibility Electrodeposited Zn-Ni-sisal Nanocrystals Composite Coatings - Morphology, Structure and Corrosion Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1