M. G. Zimmermann, Marina Kauling de Almeira, Lara Vasconcellos Ponsoni, Majorie Anacleto Bernardo, A. J. Zattera, L. V. Beltrami, M. Poletto, Daiane Romanzini, Kristian Madeira
{"title":"柔性版光敏聚合物-板渣掺入对玻璃纤维增强聚酯复合材料力学性能的影响","authors":"M. G. Zimmermann, Marina Kauling de Almeira, Lara Vasconcellos Ponsoni, Majorie Anacleto Bernardo, A. J. Zattera, L. V. Beltrami, M. Poletto, Daiane Romanzini, Kristian Madeira","doi":"10.1590/1980-5373-mr-2023-0239","DOIUrl":null,"url":null,"abstract":"In this study, the effects of incorporating recycled photopolymer-plate residues from a packaging flexography process into polyester-glass fiber composites were examined. Ternary composites with an unsaturated polyester matrix with elastomer particles from recycled photopolymer-plate residues were evaluated using two types of glass fibers: in the forms of a fabric with bidirectional fibers and a blanket with multidirectional fibers. The composites were prepared by hand lay-up lamination using different rubber contents (0, 2.5, 5, and 10 wt% based on the polyester resin mass fraction), and were characterized for their void content, flexural and impact strengths, and dynamic mechanical properties. Primary results indicated that the incorporation of the rubber particles increased the difficulty of lamination, while promoting greater void formation with higher filler content. The rubber particles decreased the impact resistance properties but did not reduce the flexural strength or storage modulus, indicating that despite the elastomeric composition, this residue from the photopolymer plates showed a reinforcing rather than toughening character.","PeriodicalId":18331,"journal":{"name":"Materials Research-ibero-american Journal of Materials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Flexographic Photopolymer-Plate Residue Incorporation on the Mechanical Properties of Glass-Fiber-Reinforced Polyester Composites\",\"authors\":\"M. G. Zimmermann, Marina Kauling de Almeira, Lara Vasconcellos Ponsoni, Majorie Anacleto Bernardo, A. J. Zattera, L. V. Beltrami, M. Poletto, Daiane Romanzini, Kristian Madeira\",\"doi\":\"10.1590/1980-5373-mr-2023-0239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effects of incorporating recycled photopolymer-plate residues from a packaging flexography process into polyester-glass fiber composites were examined. Ternary composites with an unsaturated polyester matrix with elastomer particles from recycled photopolymer-plate residues were evaluated using two types of glass fibers: in the forms of a fabric with bidirectional fibers and a blanket with multidirectional fibers. The composites were prepared by hand lay-up lamination using different rubber contents (0, 2.5, 5, and 10 wt% based on the polyester resin mass fraction), and were characterized for their void content, flexural and impact strengths, and dynamic mechanical properties. Primary results indicated that the incorporation of the rubber particles increased the difficulty of lamination, while promoting greater void formation with higher filler content. The rubber particles decreased the impact resistance properties but did not reduce the flexural strength or storage modulus, indicating that despite the elastomeric composition, this residue from the photopolymer plates showed a reinforcing rather than toughening character.\",\"PeriodicalId\":18331,\"journal\":{\"name\":\"Materials Research-ibero-american Journal of Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research-ibero-american Journal of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1590/1980-5373-mr-2023-0239\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research-ibero-american Journal of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/1980-5373-mr-2023-0239","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of Flexographic Photopolymer-Plate Residue Incorporation on the Mechanical Properties of Glass-Fiber-Reinforced Polyester Composites
In this study, the effects of incorporating recycled photopolymer-plate residues from a packaging flexography process into polyester-glass fiber composites were examined. Ternary composites with an unsaturated polyester matrix with elastomer particles from recycled photopolymer-plate residues were evaluated using two types of glass fibers: in the forms of a fabric with bidirectional fibers and a blanket with multidirectional fibers. The composites were prepared by hand lay-up lamination using different rubber contents (0, 2.5, 5, and 10 wt% based on the polyester resin mass fraction), and were characterized for their void content, flexural and impact strengths, and dynamic mechanical properties. Primary results indicated that the incorporation of the rubber particles increased the difficulty of lamination, while promoting greater void formation with higher filler content. The rubber particles decreased the impact resistance properties but did not reduce the flexural strength or storage modulus, indicating that despite the elastomeric composition, this residue from the photopolymer plates showed a reinforcing rather than toughening character.