{"title":"新西兰奶牛场系统和关键环境影响","authors":"Jiafa Luo, S. Ledgard","doi":"10.15302/J-FASE-2020372","DOIUrl":null,"url":null,"abstract":"This paper provides an overview of the range of dairy pasture grazing systems used in New Zealand (NZ), the changes with increased inputs over time and associated key environmental effects including nitrogen (N) leaching and greenhouse gas (GHG) emissions. NZ dairy farming systems are based on yearround grazing and seasonal milk production on perennial ryegrass/clover pasture where cows are rotationally grazed in paddocks. There was an increase in stocking rate on NZ dairy farms from 2.62 cows ha – 1 in 2000/2001 to 2.85 cows ha – 1 in 2015/2016. During the same period annual milk solids production increased from 315 to 378 kg$yr – 1 per cow. This performance has coincided with an increase in N fertilizer use (by e 30%) and a twofold increase in externallysourced feeds. Externally-sourced feeds with a low protein concentration (e.g., maize silage) can increase the efficiency of N utilization and potentially reduce N losses per unit of production. Off-paddock facilities (such as standoff or feed pads) are often used to restrict grazing during very wet winter conditions. A systems analysis of contrasting dairy farms in Waikato (largest NZ dairying region) indicates that the increased input would result in an increase in per-cow milk production but little change in efficiency of milk production from a total land use perspective. This analysis also shows that the increased inputs caused an 11% decrease in N footprint (i.e., N emissions per unit of milk production) and a 2% increase in C footprint (i.e., greenhouse gas (GHG) emissions per unit of","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"NEW ZEALAND DAIRY FARM SYSTEMS AND KEY ENVIRONMENTAL EFFECTS\",\"authors\":\"Jiafa Luo, S. Ledgard\",\"doi\":\"10.15302/J-FASE-2020372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides an overview of the range of dairy pasture grazing systems used in New Zealand (NZ), the changes with increased inputs over time and associated key environmental effects including nitrogen (N) leaching and greenhouse gas (GHG) emissions. NZ dairy farming systems are based on yearround grazing and seasonal milk production on perennial ryegrass/clover pasture where cows are rotationally grazed in paddocks. There was an increase in stocking rate on NZ dairy farms from 2.62 cows ha – 1 in 2000/2001 to 2.85 cows ha – 1 in 2015/2016. During the same period annual milk solids production increased from 315 to 378 kg$yr – 1 per cow. This performance has coincided with an increase in N fertilizer use (by e 30%) and a twofold increase in externallysourced feeds. Externally-sourced feeds with a low protein concentration (e.g., maize silage) can increase the efficiency of N utilization and potentially reduce N losses per unit of production. Off-paddock facilities (such as standoff or feed pads) are often used to restrict grazing during very wet winter conditions. A systems analysis of contrasting dairy farms in Waikato (largest NZ dairying region) indicates that the increased input would result in an increase in per-cow milk production but little change in efficiency of milk production from a total land use perspective. This analysis also shows that the increased inputs caused an 11% decrease in N footprint (i.e., N emissions per unit of milk production) and a 2% increase in C footprint (i.e., greenhouse gas (GHG) emissions per unit of\",\"PeriodicalId\":12565,\"journal\":{\"name\":\"Frontiers of Agricultural Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Agricultural Science and Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15302/J-FASE-2020372\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Agricultural Science and Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15302/J-FASE-2020372","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
NEW ZEALAND DAIRY FARM SYSTEMS AND KEY ENVIRONMENTAL EFFECTS
This paper provides an overview of the range of dairy pasture grazing systems used in New Zealand (NZ), the changes with increased inputs over time and associated key environmental effects including nitrogen (N) leaching and greenhouse gas (GHG) emissions. NZ dairy farming systems are based on yearround grazing and seasonal milk production on perennial ryegrass/clover pasture where cows are rotationally grazed in paddocks. There was an increase in stocking rate on NZ dairy farms from 2.62 cows ha – 1 in 2000/2001 to 2.85 cows ha – 1 in 2015/2016. During the same period annual milk solids production increased from 315 to 378 kg$yr – 1 per cow. This performance has coincided with an increase in N fertilizer use (by e 30%) and a twofold increase in externallysourced feeds. Externally-sourced feeds with a low protein concentration (e.g., maize silage) can increase the efficiency of N utilization and potentially reduce N losses per unit of production. Off-paddock facilities (such as standoff or feed pads) are often used to restrict grazing during very wet winter conditions. A systems analysis of contrasting dairy farms in Waikato (largest NZ dairying region) indicates that the increased input would result in an increase in per-cow milk production but little change in efficiency of milk production from a total land use perspective. This analysis also shows that the increased inputs caused an 11% decrease in N footprint (i.e., N emissions per unit of milk production) and a 2% increase in C footprint (i.e., greenhouse gas (GHG) emissions per unit of
期刊介绍:
Frontiers of Agricultural Science and Engineering (FASE) is an international journal for research on agricultural science and engineering. The journal’s aim is to report advanced and innovative scientific proceedings in agricultural field including Crop Science, Agricultural Biotechnology, Horticulture, Plant Protection, Agricultural Engineering, Forestry Engineering, Agricultural Resources, Animal Husbandry and Veterinary Medicine, Applied Ecology, Forestry and Fisheries. FASE is committed to provide a high level scientific and professional forum for researchers worldwide to publish their original findings and to utilize these novel findings to benefit the society.