使用商用KATALCO催化剂的低温和压力单容器集成氨合成和分离

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Johnson Matthey Technology Review Pub Date : 2022-01-01 DOI:10.1595/205651322x16577001040526
Collin Smith, L. Torrente‐Murciano
{"title":"使用商用KATALCO催化剂的低温和压力单容器集成氨合成和分离","authors":"Collin Smith, L. Torrente‐Murciano","doi":"10.1595/205651322x16577001040526","DOIUrl":null,"url":null,"abstract":"In recent years, the potential for “green” ammonia produced from renewable energy has renewed the pursuit for a low-pressure, low-temperature ammonia synthesis process using novel catalysts capable to operate under these conditions. In past decades, the trend of decreasing the pressure in the existing Haber-Bosch process to the de facto limit of condensation at 80 bar has been achieved through catalysts such as iron-based ICI’s KATALCO 74-1. By replacing the separation of ammonia via condensation by absorption, the process loop can be integrated into a single-vessel at constant temperature, and the operating region drastically shifts to lower pressures (<30 bar) and temperatures (<380°C) unknown to commercial catalysts. Herein, the low-temperature and low-pressure activity of KATALCO 74-1 and KATALCO 35-8A catalysts is studied and compared to Ru/Cs/CeO2 catalyst known to have low-temperature activity through resistance to hydrogen inhibition. Due to its low-temperature and high-conversion activity, KATALCO 74-1 can be deployed in an integrated reaction and absorptive-separation using MnCl2/SiO2 as absorbent. Although further catalyst development is needed to increase compatibility with the absorbent in a feasible reactor design, this study clearly demonstrates the need to re-evaluate the viability of commercial ammonia synthesis catalysts, especially iron-based ones, for their deployment on novel green ammonia synthesis processes driven exclusively by renewable energy.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Temperature and Pressure Single-Vessel Integrated Ammonia Synthesis and Separation using Commercial KATALCO Catalysts\",\"authors\":\"Collin Smith, L. Torrente‐Murciano\",\"doi\":\"10.1595/205651322x16577001040526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the potential for “green” ammonia produced from renewable energy has renewed the pursuit for a low-pressure, low-temperature ammonia synthesis process using novel catalysts capable to operate under these conditions. In past decades, the trend of decreasing the pressure in the existing Haber-Bosch process to the de facto limit of condensation at 80 bar has been achieved through catalysts such as iron-based ICI’s KATALCO 74-1. By replacing the separation of ammonia via condensation by absorption, the process loop can be integrated into a single-vessel at constant temperature, and the operating region drastically shifts to lower pressures (<30 bar) and temperatures (<380°C) unknown to commercial catalysts. Herein, the low-temperature and low-pressure activity of KATALCO 74-1 and KATALCO 35-8A catalysts is studied and compared to Ru/Cs/CeO2 catalyst known to have low-temperature activity through resistance to hydrogen inhibition. Due to its low-temperature and high-conversion activity, KATALCO 74-1 can be deployed in an integrated reaction and absorptive-separation using MnCl2/SiO2 as absorbent. Although further catalyst development is needed to increase compatibility with the absorbent in a feasible reactor design, this study clearly demonstrates the need to re-evaluate the viability of commercial ammonia synthesis catalysts, especially iron-based ones, for their deployment on novel green ammonia synthesis processes driven exclusively by renewable energy.\",\"PeriodicalId\":14807,\"journal\":{\"name\":\"Johnson Matthey Technology Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Johnson Matthey Technology Review\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1595/205651322x16577001040526\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651322x16577001040526","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,利用可再生能源生产“绿色”氨的潜力重新激发了人们对低压、低温氨合成工艺的追求,这种工艺使用了能够在这些条件下运行的新型催化剂。在过去的几十年里,通过ICI的KATALCO 74-1等铁基催化剂,已经实现了将现有Haber-Bosch工艺中的压力降低到80 bar的实际冷凝极限的趋势。通过吸收取代氨的冷凝分离,过程回路可以在恒温下集成到单个容器中,并且操作区域急剧转变为商业催化剂未知的较低压力(<30 bar)和温度(<380°C)。本文研究了KATALCO 74-1和KATALCO 35-8A催化剂的低温和低压活性,并与已知具有低温活性的Ru/Cs/CeO2催化剂进行了比较。由于其低温和高转化活性,KATALCO 74-1可以使用MnCl2/SiO2作为吸附剂进行综合反应和吸收分离。尽管在可行的反应器设计中,需要进一步的催化剂开发来增加与吸收剂的相容性,但本研究清楚地表明,需要重新评估商业氨合成催化剂的可行性,特别是铁基催化剂,以便将其部署在完全由可再生能源驱动的新型绿色氨合成工艺中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low Temperature and Pressure Single-Vessel Integrated Ammonia Synthesis and Separation using Commercial KATALCO Catalysts
In recent years, the potential for “green” ammonia produced from renewable energy has renewed the pursuit for a low-pressure, low-temperature ammonia synthesis process using novel catalysts capable to operate under these conditions. In past decades, the trend of decreasing the pressure in the existing Haber-Bosch process to the de facto limit of condensation at 80 bar has been achieved through catalysts such as iron-based ICI’s KATALCO 74-1. By replacing the separation of ammonia via condensation by absorption, the process loop can be integrated into a single-vessel at constant temperature, and the operating region drastically shifts to lower pressures (<30 bar) and temperatures (<380°C) unknown to commercial catalysts. Herein, the low-temperature and low-pressure activity of KATALCO 74-1 and KATALCO 35-8A catalysts is studied and compared to Ru/Cs/CeO2 catalyst known to have low-temperature activity through resistance to hydrogen inhibition. Due to its low-temperature and high-conversion activity, KATALCO 74-1 can be deployed in an integrated reaction and absorptive-separation using MnCl2/SiO2 as absorbent. Although further catalyst development is needed to increase compatibility with the absorbent in a feasible reactor design, this study clearly demonstrates the need to re-evaluate the viability of commercial ammonia synthesis catalysts, especially iron-based ones, for their deployment on novel green ammonia synthesis processes driven exclusively by renewable energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Johnson Matthey Technology Review
Johnson Matthey Technology Review CHEMISTRY, PHYSICAL-
CiteScore
4.30
自引率
4.30%
发文量
48
审稿时长
12 weeks
期刊介绍: Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.
期刊最新文献
In the Lab: Artificial Metalloenzymes for Sustainable Chemical Production “Biotechnology Entrepreneurship: Leading, Managing and Commercializing Innovative Technologies” Johnson Matthey Highlights Microbubble Intensification of Bioprocessing “Fuel Cell and Hydrogen Technologies in Aviation”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1