通过氨分解集中和局部制氢

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Johnson Matthey Technology Review Pub Date : 2022-01-01 DOI:10.1595/205651322x16554704236047
J. Ashcroft, Helen Goddin
{"title":"通过氨分解集中和局部制氢","authors":"J. Ashcroft, Helen Goddin","doi":"10.1595/205651322x16554704236047","DOIUrl":null,"url":null,"abstract":"Ammonia is a strong candidate as a hydrogen vector and has the flexibility to be used directly as a fuel or decomposed to form pure hydrogen. The format of an ammonia decomposition plant is only starting to emerge, with two types becoming significant: centralised locations feeding into the national gas network, and decentralised units, to supply fuelling stations, the chemical industry, or remote applications. In this paper, we review the aspects critical to decompose ammonia in both cases. While the centralised cracking flowsheet can use equipment standard to current hydrogen production methods, the localised cracking unit requires a more innovative design. Energy and safety considerations may favour low temperature operation for decentralised applications, requiring high activity catalysts, whilst centralised industrial sites may operate at higher temperatures and use a base metal catalyst. Purification to deliver hydrogen suitable for fuel cells is one of the biggest challenges in developing the flowsheet.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Centralised and localised hydrogen generation by ammonia decomposition\",\"authors\":\"J. Ashcroft, Helen Goddin\",\"doi\":\"10.1595/205651322x16554704236047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ammonia is a strong candidate as a hydrogen vector and has the flexibility to be used directly as a fuel or decomposed to form pure hydrogen. The format of an ammonia decomposition plant is only starting to emerge, with two types becoming significant: centralised locations feeding into the national gas network, and decentralised units, to supply fuelling stations, the chemical industry, or remote applications. In this paper, we review the aspects critical to decompose ammonia in both cases. While the centralised cracking flowsheet can use equipment standard to current hydrogen production methods, the localised cracking unit requires a more innovative design. Energy and safety considerations may favour low temperature operation for decentralised applications, requiring high activity catalysts, whilst centralised industrial sites may operate at higher temperatures and use a base metal catalyst. Purification to deliver hydrogen suitable for fuel cells is one of the biggest challenges in developing the flowsheet.\",\"PeriodicalId\":14807,\"journal\":{\"name\":\"Johnson Matthey Technology Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Johnson Matthey Technology Review\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1595/205651322x16554704236047\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651322x16554704236047","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

氨是一个强有力的候选氢载体,具有直接用作燃料或分解成纯氢的灵活性。氨分解工厂的形式才刚刚开始出现,其中两种类型变得重要:集中的位置为国家天然气网络提供服务,分散的单元为加油站、化学工业或远程应用提供服务。在本文中,我们回顾了在这两种情况下分解氨的关键方面。虽然集中式裂化流程可以使用当前制氢方法的标准设备,但局部裂化装置需要更具创新性的设计。能源和安全方面的考虑可能有利于分散应用的低温运行,需要高活性催化剂,而集中式工业场所可能在更高的温度下运行,并使用贱金属催化剂。为燃料电池提供氢气的净化是开发流程的最大挑战之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Centralised and localised hydrogen generation by ammonia decomposition
Ammonia is a strong candidate as a hydrogen vector and has the flexibility to be used directly as a fuel or decomposed to form pure hydrogen. The format of an ammonia decomposition plant is only starting to emerge, with two types becoming significant: centralised locations feeding into the national gas network, and decentralised units, to supply fuelling stations, the chemical industry, or remote applications. In this paper, we review the aspects critical to decompose ammonia in both cases. While the centralised cracking flowsheet can use equipment standard to current hydrogen production methods, the localised cracking unit requires a more innovative design. Energy and safety considerations may favour low temperature operation for decentralised applications, requiring high activity catalysts, whilst centralised industrial sites may operate at higher temperatures and use a base metal catalyst. Purification to deliver hydrogen suitable for fuel cells is one of the biggest challenges in developing the flowsheet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Johnson Matthey Technology Review
Johnson Matthey Technology Review CHEMISTRY, PHYSICAL-
CiteScore
4.30
自引率
4.30%
发文量
48
审稿时长
12 weeks
期刊介绍: Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.
期刊最新文献
Microplasma-Sprayed Titanium and Hydroxyapatite Coatings on Ti6Al4V Alloy: in vitro Biocompatibility and Corrosion Resistance   Choosing an Analogue to Digital Converter with Data Safety in Mind Structural-Phase State Of Austenitic 20GL Steel After Thermal Treatment by Normalizing and High-Temperature Tempering Magnetron Sputtering of Antibacterial and Antifungal Ta-Cu and Nb-Cu Coatings on 3D-Printed Porous Titanium Alloy Scaffolds Effectiveness Evaluation of Pyrometallurgy and Hydrometallurgy Methods in The Recycling Process of Nd-Fe-B Permanent Magnet and Rare Earth Metals Recovery : A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1