Daniel J. Rosen, Duncan Zavanelli, Christopher B. Murray
{"title":"单分散PtCo纳米晶的电化学合成","authors":"Daniel J. Rosen, Duncan Zavanelli, Christopher B. Murray","doi":"10.1595/205651323x16799975192215","DOIUrl":null,"url":null,"abstract":"The synthesis of platinum-cobalt Nanocrystals (NCs) using colloidal solvothermal techniques is well understood. However, for monodisperse NCs to form, high temperatures and environmentally detrimental solvents are needed. We report a room temperature, aqueous method of Pt-Co NC synthesis using electrochemical reduction as the driving force for nucleation and growth. It is found that colloidal NCs will form in both the presence and absence of surfactant. Additionally, we report a monodisperse electrochemical deposition of nanocrystals utilizing a transparent conducting oxide electrode. The methods developed here will allow for a synthetic method to produce nanocatalysts with minimal environmental impact and should be readily applicable to other NC systems, including single- and multi-component alloys.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"112 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Synthesis of Monodisperse PtCo Nanocrystals\",\"authors\":\"Daniel J. Rosen, Duncan Zavanelli, Christopher B. Murray\",\"doi\":\"10.1595/205651323x16799975192215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of platinum-cobalt Nanocrystals (NCs) using colloidal solvothermal techniques is well understood. However, for monodisperse NCs to form, high temperatures and environmentally detrimental solvents are needed. We report a room temperature, aqueous method of Pt-Co NC synthesis using electrochemical reduction as the driving force for nucleation and growth. It is found that colloidal NCs will form in both the presence and absence of surfactant. Additionally, we report a monodisperse electrochemical deposition of nanocrystals utilizing a transparent conducting oxide electrode. The methods developed here will allow for a synthetic method to produce nanocatalysts with minimal environmental impact and should be readily applicable to other NC systems, including single- and multi-component alloys.\",\"PeriodicalId\":14807,\"journal\":{\"name\":\"Johnson Matthey Technology Review\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Johnson Matthey Technology Review\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1595/205651323x16799975192215\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651323x16799975192215","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrochemical Synthesis of Monodisperse PtCo Nanocrystals
The synthesis of platinum-cobalt Nanocrystals (NCs) using colloidal solvothermal techniques is well understood. However, for monodisperse NCs to form, high temperatures and environmentally detrimental solvents are needed. We report a room temperature, aqueous method of Pt-Co NC synthesis using electrochemical reduction as the driving force for nucleation and growth. It is found that colloidal NCs will form in both the presence and absence of surfactant. Additionally, we report a monodisperse electrochemical deposition of nanocrystals utilizing a transparent conducting oxide electrode. The methods developed here will allow for a synthetic method to produce nanocatalysts with minimal environmental impact and should be readily applicable to other NC systems, including single- and multi-component alloys.
期刊介绍:
Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.