J. Murawski, S. Scott, Reshma R. Rao, Katie Rigg, C. Zalitis, James Stevens, J. Sharman, G. Hinds, I. Stephens
{"title":"酸性介质中氧析出条件下IrOx的基准稳定性研究进展","authors":"J. Murawski, S. Scott, Reshma R. Rao, Katie Rigg, C. Zalitis, James Stevens, J. Sharman, G. Hinds, I. Stephens","doi":"10.1595/205651323x16848455435118","DOIUrl":null,"url":null,"abstract":"State-of-the-art proton exchange membrane (PEM) electrolysers employ iridium-based catalysts to facilitate oxygen evolution at the anode. To enable scale-up of the technology to the terawatt level, further improvements in the iridium utilisation are needed, without incurring additional overpotential losses or reducing the device lifetime. The research community has only recently started to attempt systematic benchmarking of catalyst stability. Short term electrochemical methods alone are insufficient to predict catalyst degradation; they can both underestimate and overestimate catalyst durability. Complementary techniques, such as inductively coupled plasma - mass spectrometry, are required to provide more reliable assessment of the amount of catalyst lost through dissolution. Herein, we critically review the state of the art in probing degradation of iridium-based oxide catalysts. We also highlight considerations and best practices for the investigation of activity and stability of oxygen evolution catalysts via short term testing.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking Stability of IrOx in Acidic Media under O2 Evolution Conditions: A Review\",\"authors\":\"J. Murawski, S. Scott, Reshma R. Rao, Katie Rigg, C. Zalitis, James Stevens, J. Sharman, G. Hinds, I. Stephens\",\"doi\":\"10.1595/205651323x16848455435118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art proton exchange membrane (PEM) electrolysers employ iridium-based catalysts to facilitate oxygen evolution at the anode. To enable scale-up of the technology to the terawatt level, further improvements in the iridium utilisation are needed, without incurring additional overpotential losses or reducing the device lifetime. The research community has only recently started to attempt systematic benchmarking of catalyst stability. Short term electrochemical methods alone are insufficient to predict catalyst degradation; they can both underestimate and overestimate catalyst durability. Complementary techniques, such as inductively coupled plasma - mass spectrometry, are required to provide more reliable assessment of the amount of catalyst lost through dissolution. Herein, we critically review the state of the art in probing degradation of iridium-based oxide catalysts. We also highlight considerations and best practices for the investigation of activity and stability of oxygen evolution catalysts via short term testing.\",\"PeriodicalId\":14807,\"journal\":{\"name\":\"Johnson Matthey Technology Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Johnson Matthey Technology Review\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1595/205651323x16848455435118\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651323x16848455435118","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Benchmarking Stability of IrOx in Acidic Media under O2 Evolution Conditions: A Review
State-of-the-art proton exchange membrane (PEM) electrolysers employ iridium-based catalysts to facilitate oxygen evolution at the anode. To enable scale-up of the technology to the terawatt level, further improvements in the iridium utilisation are needed, without incurring additional overpotential losses or reducing the device lifetime. The research community has only recently started to attempt systematic benchmarking of catalyst stability. Short term electrochemical methods alone are insufficient to predict catalyst degradation; they can both underestimate and overestimate catalyst durability. Complementary techniques, such as inductively coupled plasma - mass spectrometry, are required to provide more reliable assessment of the amount of catalyst lost through dissolution. Herein, we critically review the state of the art in probing degradation of iridium-based oxide catalysts. We also highlight considerations and best practices for the investigation of activity and stability of oxygen evolution catalysts via short term testing.
期刊介绍:
Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.