基于γ射线能谱的机器学习估计辐射源分布

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of Advanced Simulation in Science and Engineering Pub Date : 2020-01-01 DOI:10.15748/jasse.7.71
Takero Uemura, K. Yamaguchi
{"title":"基于γ射线能谱的机器学习估计辐射源分布","authors":"Takero Uemura, K. Yamaguchi","doi":"10.15748/jasse.7.71","DOIUrl":null,"url":null,"abstract":". A method is proposed for estimating the original radiation source distribution by machine learning using the dose and energy spectrum of γ rays emitted from radiation sources placed at various positions. This method does not require complicated parameter set-tings and can be also applied when there is a shield liked Pb between the radiation source and the measurement point. The estimation results displayed the original radiation source distribution with high accuracy. It is expected to be used for decontamination and decommissioning by developing this method.","PeriodicalId":41942,"journal":{"name":"Journal of Advanced Simulation in Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of radiation source distribution using machine learning with γ ray energy spectra\",\"authors\":\"Takero Uemura, K. Yamaguchi\",\"doi\":\"10.15748/jasse.7.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A method is proposed for estimating the original radiation source distribution by machine learning using the dose and energy spectrum of γ rays emitted from radiation sources placed at various positions. This method does not require complicated parameter set-tings and can be also applied when there is a shield liked Pb between the radiation source and the measurement point. The estimation results displayed the original radiation source distribution with high accuracy. It is expected to be used for decontamination and decommissioning by developing this method.\",\"PeriodicalId\":41942,\"journal\":{\"name\":\"Journal of Advanced Simulation in Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Simulation in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15748/jasse.7.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Simulation in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15748/jasse.7.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

. 提出了一种利用不同位置辐射源发出的γ射线的剂量和能谱,通过机器学习估计原始辐射源分布的方法。这种方法不需要复杂的参数设置,当辐射源和测量点之间存在像Pb这样的屏蔽时也可以应用。估计结果显示了原始辐射源的分布,精度较高。通过开发这种方法,有望将其用于净化和退役。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of radiation source distribution using machine learning with γ ray energy spectra
. A method is proposed for estimating the original radiation source distribution by machine learning using the dose and energy spectrum of γ rays emitted from radiation sources placed at various positions. This method does not require complicated parameter set-tings and can be also applied when there is a shield liked Pb between the radiation source and the measurement point. The estimation results displayed the original radiation source distribution with high accuracy. It is expected to be used for decontamination and decommissioning by developing this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
期刊最新文献
Implementation and performance evaluation of a hierarchical parallel solver for saddle point problems on a GPU cluster Molecular Dynamics Simulation on Hydrogen Trapping on Tungsten Vacancy Fundamental study on magnetohydrodynamic simulation method using deep learning Semi-explicit large eddy simulation in non-reacting air/gas fuel jet flows A human motion angle prediction method using a neural network and feature-extraction-processed sEMG obtained in real time to utilize mechanical delay of sEMG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1