静磁畴分解分析中的预调节器关系

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of Advanced Simulation in Science and Engineering Pub Date : 2021-01-01 DOI:10.15748/JASSE.8.27
H. Kanayama, M. Ogino, S. Sugimoto, Kaworu Yodo
{"title":"静磁畴分解分析中的预调节器关系","authors":"H. Kanayama, M. Ogino, S. Sugimoto, Kaworu Yodo","doi":"10.15748/JASSE.8.27","DOIUrl":null,"url":null,"abstract":". A relation of preconditioners of domain decomposition method is shown for numerical analysis of 3-Dimensional (3D) magnetostatic problems taking the magnetic vector potential as an unknown function. The iterative domain decomposition method is combined with the Preconditioned Conjugate Gradient (PCG) procedure and the Hierarchical Domain Decomposition Method (HDDM) which is adopted in parallel computing. Our previously employed preconditioner was the Neumann-Neumann (NN) preconditioner. Numerical results showed that the method was only effective for small number subdomain problems. In this paper, we consider its improvement making use of the Balancing Domain Decomposition DIAGonal scaling (BDD-DIAG) preconditioner and show the asymptotic equivalence between BDD-DIAG and the simplified diagonal scaling (diag) preconditioner, which is derived from the following numerical evidences. Finally, nonlinear processing is also tried for the first time.","PeriodicalId":41942,"journal":{"name":"Journal of Advanced Simulation in Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A relation of preconditioners for magnetostatic domain decomposition analysis\",\"authors\":\"H. Kanayama, M. Ogino, S. Sugimoto, Kaworu Yodo\",\"doi\":\"10.15748/JASSE.8.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A relation of preconditioners of domain decomposition method is shown for numerical analysis of 3-Dimensional (3D) magnetostatic problems taking the magnetic vector potential as an unknown function. The iterative domain decomposition method is combined with the Preconditioned Conjugate Gradient (PCG) procedure and the Hierarchical Domain Decomposition Method (HDDM) which is adopted in parallel computing. Our previously employed preconditioner was the Neumann-Neumann (NN) preconditioner. Numerical results showed that the method was only effective for small number subdomain problems. In this paper, we consider its improvement making use of the Balancing Domain Decomposition DIAGonal scaling (BDD-DIAG) preconditioner and show the asymptotic equivalence between BDD-DIAG and the simplified diagonal scaling (diag) preconditioner, which is derived from the following numerical evidences. Finally, nonlinear processing is also tried for the first time.\",\"PeriodicalId\":41942,\"journal\":{\"name\":\"Journal of Advanced Simulation in Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Simulation in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15748/JASSE.8.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Simulation in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15748/JASSE.8.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

. 给出了以磁矢量势为未知函数对三维静磁问题进行数值分析的域分解法的前置条件关系。迭代域分解方法与预条件共轭梯度法(PCG)和并行计算中采用的层次域分解法(HDDM)相结合。我们以前使用的预条件是诺伊曼-诺伊曼(NN)预条件。数值结果表明,该方法仅对少量子域问题有效。本文考虑利用平衡域分解对角尺度(BDD-DIAG)预条件对其进行改进,并通过以下数值证据证明了BDD-DIAG与简化对角尺度(diag)预条件之间的渐近等价。最后,也首次尝试了非线性处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A relation of preconditioners for magnetostatic domain decomposition analysis
. A relation of preconditioners of domain decomposition method is shown for numerical analysis of 3-Dimensional (3D) magnetostatic problems taking the magnetic vector potential as an unknown function. The iterative domain decomposition method is combined with the Preconditioned Conjugate Gradient (PCG) procedure and the Hierarchical Domain Decomposition Method (HDDM) which is adopted in parallel computing. Our previously employed preconditioner was the Neumann-Neumann (NN) preconditioner. Numerical results showed that the method was only effective for small number subdomain problems. In this paper, we consider its improvement making use of the Balancing Domain Decomposition DIAGonal scaling (BDD-DIAG) preconditioner and show the asymptotic equivalence between BDD-DIAG and the simplified diagonal scaling (diag) preconditioner, which is derived from the following numerical evidences. Finally, nonlinear processing is also tried for the first time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
期刊最新文献
Implementation and performance evaluation of a hierarchical parallel solver for saddle point problems on a GPU cluster Molecular Dynamics Simulation on Hydrogen Trapping on Tungsten Vacancy Fundamental study on magnetohydrodynamic simulation method using deep learning Semi-explicit large eddy simulation in non-reacting air/gas fuel jet flows A human motion angle prediction method using a neural network and feature-extraction-processed sEMG obtained in real time to utilize mechanical delay of sEMG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1