搜索最大和向量的验证数值计算

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of Advanced Simulation in Science and Engineering Pub Date : 2021-01-01 DOI:10.15748/JASSE.8.53
Yukiko Uchino, K. Ozaki
{"title":"搜索最大和向量的验证数值计算","authors":"Yukiko Uchino, K. Ozaki","doi":"10.15748/JASSE.8.53","DOIUrl":null,"url":null,"abstract":". This study proposes a numerical method for searching for vectors whose sum of all elements is maximum. The vector search can be applied to many scientific problems. If we use numerical computations without considering rounding errors, in a worst-case sce-nario, we might find incorrect vectors as a result. We propose herein an adaptive method designed to work accurately, regardless of the rounding error problems, based on an error-free transformation of a floating-point vector.","PeriodicalId":41942,"journal":{"name":"Journal of Advanced Simulation in Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verified Numerical Computations for Searching for Vectors with the Maximum Sum\",\"authors\":\"Yukiko Uchino, K. Ozaki\",\"doi\":\"10.15748/JASSE.8.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This study proposes a numerical method for searching for vectors whose sum of all elements is maximum. The vector search can be applied to many scientific problems. If we use numerical computations without considering rounding errors, in a worst-case sce-nario, we might find incorrect vectors as a result. We propose herein an adaptive method designed to work accurately, regardless of the rounding error problems, based on an error-free transformation of a floating-point vector.\",\"PeriodicalId\":41942,\"journal\":{\"name\":\"Journal of Advanced Simulation in Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Simulation in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15748/JASSE.8.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Simulation in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15748/JASSE.8.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

. 本文提出了一种求所有元素和最大的向量的数值方法。向量搜索可以应用于许多科学问题。如果我们使用数值计算而不考虑舍入误差,在最坏的情况下,我们可能会发现不正确的向量。在此,我们提出了一种基于浮点向量的无误差变换的自适应方法,该方法可以精确地工作,而不考虑舍入误差问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verified Numerical Computations for Searching for Vectors with the Maximum Sum
. This study proposes a numerical method for searching for vectors whose sum of all elements is maximum. The vector search can be applied to many scientific problems. If we use numerical computations without considering rounding errors, in a worst-case sce-nario, we might find incorrect vectors as a result. We propose herein an adaptive method designed to work accurately, regardless of the rounding error problems, based on an error-free transformation of a floating-point vector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
期刊最新文献
Implementation and performance evaluation of a hierarchical parallel solver for saddle point problems on a GPU cluster Molecular Dynamics Simulation on Hydrogen Trapping on Tungsten Vacancy Fundamental study on magnetohydrodynamic simulation method using deep learning Semi-explicit large eddy simulation in non-reacting air/gas fuel jet flows A human motion angle prediction method using a neural network and feature-extraction-processed sEMG obtained in real time to utilize mechanical delay of sEMG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1