用伪微分算子类算子对心电图进行小波变换的各种尺度表示

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of Advanced Simulation in Science and Engineering Pub Date : 2022-01-01 DOI:10.15748/jasse.9.96
M. Rahman, T. Kagawa, S. Kawasaki, Shunya Nagai, Takayuki Okai, H. Oya, Yumi Yahagi, Minoru W. Yoshida
{"title":"用伪微分算子类算子对心电图进行小波变换的各种尺度表示","authors":"M. Rahman, T. Kagawa, S. Kawasaki, Shunya Nagai, Takayuki Okai, H. Oya, Yumi Yahagi, Minoru W. Yoshida","doi":"10.15748/jasse.9.96","DOIUrl":null,"url":null,"abstract":". This paper presents various experimental scalograms of electrocardiograms (ECG) from which the accuracy of discrimination between shockable and non-shockable arrhythmia is improved. To derive the scalograms, for the ECG signals the Gabor wavelet transform, having the various pseudo-di ff erential operator like operators, is applied. Also, for the transformed signals, several nonlinear transforms by means of nonlinear functions are performed. These scalograms are analyzed by the normalized spectrum index (NSI) to find the statistical characteristics, and then the qualitative evaluation is performed to select the best pair of pseudo-di ff erential operator and nonlinear f unction. Through the best pair selected, a good discrimination performance in the decision algorithm is guaranteed. The histogram is used in the decision stage to distinguish the shockable and non-shockable arrhythmia.","PeriodicalId":41942,"journal":{"name":"Journal of Advanced Simulation in Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Various scalographic representation of electrocardiograms through wavelet transform with pseudo-differential operator like operators\",\"authors\":\"M. Rahman, T. Kagawa, S. Kawasaki, Shunya Nagai, Takayuki Okai, H. Oya, Yumi Yahagi, Minoru W. Yoshida\",\"doi\":\"10.15748/jasse.9.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper presents various experimental scalograms of electrocardiograms (ECG) from which the accuracy of discrimination between shockable and non-shockable arrhythmia is improved. To derive the scalograms, for the ECG signals the Gabor wavelet transform, having the various pseudo-di ff erential operator like operators, is applied. Also, for the transformed signals, several nonlinear transforms by means of nonlinear functions are performed. These scalograms are analyzed by the normalized spectrum index (NSI) to find the statistical characteristics, and then the qualitative evaluation is performed to select the best pair of pseudo-di ff erential operator and nonlinear f unction. Through the best pair selected, a good discrimination performance in the decision algorithm is guaranteed. The histogram is used in the decision stage to distinguish the shockable and non-shockable arrhythmia.\",\"PeriodicalId\":41942,\"journal\":{\"name\":\"Journal of Advanced Simulation in Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Simulation in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15748/jasse.9.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Simulation in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15748/jasse.9.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

. 本文给出了各种实验心电图刻度图,以此提高了区分震荡性和非震荡性心律失常的准确性。为了得到尺度图,对心电信号应用了具有各种伪微分算子的Gabor小波变换。对变换后的信号,利用非线性函数进行若干非线性变换。利用归一化谱指数(NSI)对这些尺度图进行分析,找出统计特征,然后进行定性评价,选择最佳的伪微分算子和非线性函数对。通过选择最佳对,保证了决策算法具有良好的判别性能。直方图在判定阶段用于区分突发性和非突发性心律失常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Various scalographic representation of electrocardiograms through wavelet transform with pseudo-differential operator like operators
. This paper presents various experimental scalograms of electrocardiograms (ECG) from which the accuracy of discrimination between shockable and non-shockable arrhythmia is improved. To derive the scalograms, for the ECG signals the Gabor wavelet transform, having the various pseudo-di ff erential operator like operators, is applied. Also, for the transformed signals, several nonlinear transforms by means of nonlinear functions are performed. These scalograms are analyzed by the normalized spectrum index (NSI) to find the statistical characteristics, and then the qualitative evaluation is performed to select the best pair of pseudo-di ff erential operator and nonlinear f unction. Through the best pair selected, a good discrimination performance in the decision algorithm is guaranteed. The histogram is used in the decision stage to distinguish the shockable and non-shockable arrhythmia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
期刊最新文献
Implementation and performance evaluation of a hierarchical parallel solver for saddle point problems on a GPU cluster Molecular Dynamics Simulation on Hydrogen Trapping on Tungsten Vacancy Fundamental study on magnetohydrodynamic simulation method using deep learning Semi-explicit large eddy simulation in non-reacting air/gas fuel jet flows A human motion angle prediction method using a neural network and feature-extraction-processed sEMG obtained in real time to utilize mechanical delay of sEMG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1