{"title":"两种保守的多示踪有效半拉格朗日格式集成在一个光谱元素(气候)动力核心中的多处理器系统","authors":"C. Erath, M. Taylor, R. Nair","doi":"10.1515/caim-2016-0023","DOIUrl":null,"url":null,"abstract":"Abstract In today’s atmospheric numerical modeling, scalable and highly accurate numerical schemes are of particular interest. To address these issues Galerkin schemes, such as the spectral element method, have received more attention in the last decade. They also provide other state-of-the-art capabilities such as improved conservation. However, the tracer transport of hundreds of tracers, e.g., in the chemistry version of the Community Atmosphere Model, is still a performance bottleneck. Therefore, we consider two conservative semi-Lagrangian schemes. Both are designed to be multi-tracer efficient, third order accurate, and allow significantly longer time steps than explicit Eulerian formulations. We address the difficulties arising on the cubed-sphere projection and on parallel computers and show the high scalability of our approach. Additionally, we use the two schemes for the transport of passive tracers in a dynamical core and compare our results with a current spectral element tracer transport advection used by the High-Order Method Modeling Environment.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"7 1","pages":"74 - 98"},"PeriodicalIF":0.3000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/caim-2016-0023","citationCount":"3","resultStr":"{\"title\":\"Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core\",\"authors\":\"C. Erath, M. Taylor, R. Nair\",\"doi\":\"10.1515/caim-2016-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In today’s atmospheric numerical modeling, scalable and highly accurate numerical schemes are of particular interest. To address these issues Galerkin schemes, such as the spectral element method, have received more attention in the last decade. They also provide other state-of-the-art capabilities such as improved conservation. However, the tracer transport of hundreds of tracers, e.g., in the chemistry version of the Community Atmosphere Model, is still a performance bottleneck. Therefore, we consider two conservative semi-Lagrangian schemes. Both are designed to be multi-tracer efficient, third order accurate, and allow significantly longer time steps than explicit Eulerian formulations. We address the difficulties arising on the cubed-sphere projection and on parallel computers and show the high scalability of our approach. Additionally, we use the two schemes for the transport of passive tracers in a dynamical core and compare our results with a current spectral element tracer transport advection used by the High-Order Method Modeling Environment.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"7 1\",\"pages\":\"74 - 98\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/caim-2016-0023\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/caim-2016-0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/caim-2016-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core
Abstract In today’s atmospheric numerical modeling, scalable and highly accurate numerical schemes are of particular interest. To address these issues Galerkin schemes, such as the spectral element method, have received more attention in the last decade. They also provide other state-of-the-art capabilities such as improved conservation. However, the tracer transport of hundreds of tracers, e.g., in the chemistry version of the Community Atmosphere Model, is still a performance bottleneck. Therefore, we consider two conservative semi-Lagrangian schemes. Both are designed to be multi-tracer efficient, third order accurate, and allow significantly longer time steps than explicit Eulerian formulations. We address the difficulties arising on the cubed-sphere projection and on parallel computers and show the high scalability of our approach. Additionally, we use the two schemes for the transport of passive tracers in a dynamical core and compare our results with a current spectral element tracer transport advection used by the High-Order Method Modeling Environment.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.