S. Arora, Kalpana Tirpude, Pallavi Rushiya, Nidhi Sapkal, Subhash Yende, Abhay Ittadwar, Sapan Shah
{"title":"新木耳植物成分抗sars - cov - 23cl Pro的实验研究","authors":"S. Arora, Kalpana Tirpude, Pallavi Rushiya, Nidhi Sapkal, Subhash Yende, Abhay Ittadwar, Sapan Shah","doi":"10.17807/orbital.v15i1.17592","DOIUrl":null,"url":null,"abstract":"In present study, the inhibitory potential of Neolamarckia cadamba phytoconstituents was investigated against SARS-CoV-2 3CL protease (3CL pro) (PDB ID: 6M2N). Molecular docking was analyzed using AutoDock Vina software by setting the grid parameter as X= -33.163, Y= -65.074 and Z= 41.434 with dimensions of the grid box 25 × 25 × 25 Å. Remdesivir was taken as the standard for comparative analysis along with inhibitor 5, 6, 7-trihydroxy-2-phenyl-4H-chromen-4-one. Furthermore, the exploration of 2 D Hydrogen-bond interactions was performed by Biovia Discovery Studio 4.5 program to identify the interactions between an amino acid of target and ligand followed by assessment of physicochemical properties using Lipinski’s rule and Swiss ADME database. The decent bonding scores of secondary metabolites owing to hydrogen bonding with catalytic residues suggest the effectiveness of these phytochemicals towards 3CLpro. The results are further consolidated positively by Lipinski’s rule and Swiss ADME prediction. Thus reasonably, observations with docking studies suggest possibility of phytochemicals from Neolamarckia cadamba to inhibit the 3CLpro and consequently would be explored further as agents for preventing COVID-19.","PeriodicalId":19680,"journal":{"name":"Orbital: The Electronic Journal of Chemistry","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Neolamarckia cadamba phytoconstituents against SARS-CoV-2 3CL Pro: An In-Silico Approach\",\"authors\":\"S. Arora, Kalpana Tirpude, Pallavi Rushiya, Nidhi Sapkal, Subhash Yende, Abhay Ittadwar, Sapan Shah\",\"doi\":\"10.17807/orbital.v15i1.17592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In present study, the inhibitory potential of Neolamarckia cadamba phytoconstituents was investigated against SARS-CoV-2 3CL protease (3CL pro) (PDB ID: 6M2N). Molecular docking was analyzed using AutoDock Vina software by setting the grid parameter as X= -33.163, Y= -65.074 and Z= 41.434 with dimensions of the grid box 25 × 25 × 25 Å. Remdesivir was taken as the standard for comparative analysis along with inhibitor 5, 6, 7-trihydroxy-2-phenyl-4H-chromen-4-one. Furthermore, the exploration of 2 D Hydrogen-bond interactions was performed by Biovia Discovery Studio 4.5 program to identify the interactions between an amino acid of target and ligand followed by assessment of physicochemical properties using Lipinski’s rule and Swiss ADME database. The decent bonding scores of secondary metabolites owing to hydrogen bonding with catalytic residues suggest the effectiveness of these phytochemicals towards 3CLpro. The results are further consolidated positively by Lipinski’s rule and Swiss ADME prediction. Thus reasonably, observations with docking studies suggest possibility of phytochemicals from Neolamarckia cadamba to inhibit the 3CLpro and consequently would be explored further as agents for preventing COVID-19.\",\"PeriodicalId\":19680,\"journal\":{\"name\":\"Orbital: The Electronic Journal of Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Orbital: The Electronic Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17807/orbital.v15i1.17592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orbital: The Electronic Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17807/orbital.v15i1.17592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of Neolamarckia cadamba phytoconstituents against SARS-CoV-2 3CL Pro: An In-Silico Approach
In present study, the inhibitory potential of Neolamarckia cadamba phytoconstituents was investigated against SARS-CoV-2 3CL protease (3CL pro) (PDB ID: 6M2N). Molecular docking was analyzed using AutoDock Vina software by setting the grid parameter as X= -33.163, Y= -65.074 and Z= 41.434 with dimensions of the grid box 25 × 25 × 25 Å. Remdesivir was taken as the standard for comparative analysis along with inhibitor 5, 6, 7-trihydroxy-2-phenyl-4H-chromen-4-one. Furthermore, the exploration of 2 D Hydrogen-bond interactions was performed by Biovia Discovery Studio 4.5 program to identify the interactions between an amino acid of target and ligand followed by assessment of physicochemical properties using Lipinski’s rule and Swiss ADME database. The decent bonding scores of secondary metabolites owing to hydrogen bonding with catalytic residues suggest the effectiveness of these phytochemicals towards 3CLpro. The results are further consolidated positively by Lipinski’s rule and Swiss ADME prediction. Thus reasonably, observations with docking studies suggest possibility of phytochemicals from Neolamarckia cadamba to inhibit the 3CLpro and consequently would be explored further as agents for preventing COVID-19.
期刊介绍:
Orbital: The Electronic Journal of Chemistry is a quarterly scientific journal published by the Institute of Chemistry of the Universidade Federal de Mato Grosso do Sul, Brazil. Original contributions (in English) are welcome, which focus on all areas of Chemistry and their interfaces with Pharmacy, Biology, and Physics. Neither authors nor readers have to pay fees. The journal has an editorial team of scientists drawn from regions throughout Brazil and world, ensuring high standards for the texts published. The following categories are available for contributions: 1. Full papers 2. Reviews 3. Papers on Education 4. History of Chemistry 5. Short communications 6. Technical notes 7. Letters to the Editor The Orbital journal also publishes a number of special issues in addition to the regular ones. The central objectives of Orbital are threefold: (i) to provide the general scientific community (at regional, Brazilian, and worldwide levels) with a formal channel for the communication and dissemination of the Chemistry-related literature output by publishing original papers based on solid research and by reporting contributions which further knowledge in the field; (ii) to provide the community with open, free access to the full content of the journal, and (iii) to constitute a valuable channel for the dissemination of Chemistry-related investigations.