{"title":"Calanolides作为SARS-CoV-2主要蛋白酶抑制剂的计算对接研究","authors":"Abdelkrim Benalia, Hasnia Abdeldjebar, Taqiy Eddine Badji","doi":"10.17721/fujcv10i1p48-59","DOIUrl":null,"url":null,"abstract":"Despite the nationwide effort provided to combat the COVID-19 pandemic, we have yet to approve a specific antiviral treatment against the SARS-CoV-2. We have studied the molecular interactions between two anti-HIV-1 natural drugs, +(-) calanolide A and -(-) calanolide B, and the active site of 3CLpro through a computational docking method. Our promising results show that the two compounds of this study are potential inhibitors of the SARS-CoV-2 3CLpro through strong binding to its catalytic dyad. Considering its progress in clinical trials as an anti-HIV-1 treatment, we suggest that +(-) calanolide A is a good candidate for the treatment of COVID-19.","PeriodicalId":42056,"journal":{"name":"French-Ukrainian Journal of Chemistry","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Docking Study of Calanolides as Potential Inhibitors of SARS-CoV-2 Main Protease\",\"authors\":\"Abdelkrim Benalia, Hasnia Abdeldjebar, Taqiy Eddine Badji\",\"doi\":\"10.17721/fujcv10i1p48-59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the nationwide effort provided to combat the COVID-19 pandemic, we have yet to approve a specific antiviral treatment against the SARS-CoV-2. We have studied the molecular interactions between two anti-HIV-1 natural drugs, +(-) calanolide A and -(-) calanolide B, and the active site of 3CLpro through a computational docking method. Our promising results show that the two compounds of this study are potential inhibitors of the SARS-CoV-2 3CLpro through strong binding to its catalytic dyad. Considering its progress in clinical trials as an anti-HIV-1 treatment, we suggest that +(-) calanolide A is a good candidate for the treatment of COVID-19.\",\"PeriodicalId\":42056,\"journal\":{\"name\":\"French-Ukrainian Journal of Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"French-Ukrainian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/fujcv10i1p48-59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"French-Ukrainian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/fujcv10i1p48-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Computational Docking Study of Calanolides as Potential Inhibitors of SARS-CoV-2 Main Protease
Despite the nationwide effort provided to combat the COVID-19 pandemic, we have yet to approve a specific antiviral treatment against the SARS-CoV-2. We have studied the molecular interactions between two anti-HIV-1 natural drugs, +(-) calanolide A and -(-) calanolide B, and the active site of 3CLpro through a computational docking method. Our promising results show that the two compounds of this study are potential inhibitors of the SARS-CoV-2 3CLpro through strong binding to its catalytic dyad. Considering its progress in clinical trials as an anti-HIV-1 treatment, we suggest that +(-) calanolide A is a good candidate for the treatment of COVID-19.